

MESTRADO

MATEMÁTICA FINANCEIRA

TRABALHO FINAL DE MESTRADO

DISSERTAÇÃO

AMERICAN PUT OPTION PRICING – A COMPARISON BETWEEN

NEURAL NETWORKS AND LEAST-SQUARE MONTE CARLO METHOD

BERNARDO PINTO MACHADO PORTUGAL SEQUEIRA

OUTUBRO - 2019

MESTRADO EM

MATEMÁTICA FINANCEIRA

TRABALHO FINAL DE MESTRADO

DISSERTAÇÃO

AMERICAN PUT OPTION PRICING – A COMPARISON BETWEEN

NEURAL NETWORKS AND LEAST-SQUARE MONTE CARLO METHOD

BERNARDO PINTO MACHADO PORTUGAL SEQUEIRA

ORIENTAÇÃO:

RAQUEL MEDEIROS GASPAR
SARA BÁRBARA DUTRA LOPES

OUTUBRO - 2019

Acknowledgments

Agradeço a Deus por todas as oportunidades que me deu na vida, por todos os

caminhos que tive a sorte de percorrer e por me dar força nos momentos mais

dif́ıceis. Só Deus sabe o meu receio na escolha deste mestrado e das dificuldades que

tive ao longo deste percurso todo por ter arriscado mudar de área.

A vida universitária foi uma caminhada longa e árdua, cheia de obstáculos mas

também cheia de benesses, e não há ninguém melhor que a minha famı́lia para

saber a minha devoção em busca de mais conhecimento. Quero agradecer aos meus

pais, José Diogo Portugal de Sequeira e Mercês Maria Milheiro de Menezes Pinto

Machado Portugal de Sequeira por terem dedicado a sua vida a proporcionar uma

educação de excelência aos filhos e por terem planeado a nossa vida em detrimento

de prazeres e tentações imediatas sem significado. Tudo o que sou hoje e o que serei

no futuro é o espelho da educação privilegiada que me foi oferecida.

Um especial agradecimento aos meus irmãos. Ao meu irmão Rodrigo por ser a

minha fonte de inspiração constante, onde desde o primeiro momento de estudo uni-

versitário tive a oportunidade de ter um exemplo contagiante de força, perseverança

e dedicação. Que não haja dúvidas quanto à admiração que tenho por ele, e quanto

eu acredito que o seu nome será recordado durante várias gerações, assim Deus o

queira. À minha irmã Catarina que, na minha infância, foi um exemplo de alguém

sem medo de mudanças na vida. Por muito risco que essas mudanças pudessem

envolver, foi sempre capaz de saltar de páıs em páıs em busca de melhor.

Agradeço ao meu amigo Kevin Fernandes por toda a ajuda que me deu com este

tema. Meu mentor desde o estágio que fizemos juntos em 2018 na James, o Kevin

i

é a grande razão para este meu interesse em Machine Learning. Caso esta amizade

não se tivesse proporcionado, muito provavelmente esta tese, com este tema, não

teria existido. Sem a sua preciosa orientação e conhecimento na área de Machine

Learning, este estudo não teria a qualidade e profundidade que tem. Obrigado,

Kevin.

Por último, mas não menos importante, um agradecimento especial às professoras

que me acompanharam nesta tese. À professora Sara Lopes por desde o ińıcio do ano

letivo me ter mostrado várias opções de temas para a tese, e, no final de tudo, ter

aceite o meu desafio, mesmo sendo um tema de uma área que não pertence. Dedicou-

se à minha tese como se da sua se tratasse, mesmo não tendo tempo livre nenhum,

e por isso estarei sempre extremamente grato. Obrigado por estar sempre a uma

mensagem de distância, dispońıvel para ver e rever o que fosse preciso, a qualquer

hora do dia. À professora Raquel Gaspar por ter aceite este tema desafiante e por ter

um método de acompanhamento organizado e, simplesmente, impecável. Agradeço-

lhe a forma direta e aberta com que lidou comigo, tendo tido a flexibilidade de

continuar a acompanhar esta tese enquanto me encontrava fora do páıs. Sem as

professoras, esta tese não seria posśıvel, foram incansáveis nestes últimos meses, fui

certamente abençoado nesta escolha.

Bernardo Pinto Machado Portugal Sequeira

ii

Abstract

This thesis compares two methods to evaluate the price of American put

options. The methods are the Least-Square Monte Carlo Method (LSM) and

Neural Networks, a machine learning method. Two different models for Neural

Networks were developed, a simple one, Model 1, and a more complex model,

Model 2.

It relies on market option prices on 4 large US companies, from December

2018 to March 2019.

All methods show a good accuracy, however, once calibrated, Neural Net-

works show a much better execution time, than the LSM. Both Neural Net-

work end up with a lower Root Mean Square Error (RMSE) than the LSM

for options of different levels of maturity and strike.

Model 2 substantially outperforms the other models, having a RMSE ca.

40% lower than that of LSM. The lower RMSE is consistent across all com-

panies, strike levels and maturities.

Keywords: Option Pricing, Neural Networks, Pricing Methods, American Op-

tions, Machine Learning

iii

Resumo

Esta tese compara dois métodos de pricing de opções de venda Ameri-

canas. Os métodos estudados são redes neurais (NN), um método de Machine

Learning, e Least-Square Monte Carlo Method (LSM). Em termos de redes

neurais foram desenvolvidos dois modelos diferentes, um modelo mais simples,

Model 1, e um modelo mais complexo, Model 2.

O estudo depende dos preços das opões de 4 gigantes empresas norte-

americanas, de Dezembro de 2018 a Março de 2019.

Todos os métodos mostram uma precisão elevada, no entanto, uma vez

calibradas, as redes neuronais mostram um tempo de execução muito infe-

rior ao LSM. Ambos os modelos de redes neurais têm uma raiz quadrada do

erro quadrático médio (RMSE) menor que o LSM para opções de diferentes

maturidades e preço de exerćıcio.

O Modelo 2 supera substancialmente os outros modelos, tendo um RMSE

ca. 40 % inferior ao do LSM. O menor RMSE é consistente em todas as

empresas, ńıveis de preço de exerćıcio e maturidade.

iv

List of Tables

1 Statistics of Variables . 8

2 Moneyness by Company . 9

3 Maturity Percentages . 10

4 Mean of variables per company . 12

5 Median of variables for each company 12

6 Kolmogorov-Smirnov by feature . 12

7 Parameters of Put Option . 13

8 LSM Method Illustration . 16

10 Results per Company . 28

11 Results per Company & Moneyness 29

12 Results per Company & Maturity . 30

A1 Correlation Matrix . 37

v

List of Figures

1 Multilayer Perceptron (from Hutchinson et al. [10]) 5

2 Moneyness Frequency . 9

3 Maturity Frequency . 10

4 Put Price vs Maturity & Moneyness 10

5 Interest Rate Term Structure at 17th March 2019 11

6 Sigmoid Function . 19

7 ReLUs Functions . 19

8 Number of nodes . 24

9 Learning Curve - Model 1 vs Model 2 26

10 Learning Curve - Model 2 Zoomed 26

11 Model 2 Feature Importance . 27

A1 Volatility Density . 36

A2 Moneyness Boxplot . 36

A3 Maturity Boxplot . 36

A4 Volatility Boxplot . 37

A5 Dividend Yield Boxplot . 37

A6 Kolmogorov-Smirnov by feature . 37

vi

Contents

Acknowledgments i

Abstract iii

List of Tables v

List of Figures vi

1 Introduction 1

2 Literature Review 2

3 Data 7

3.1 Data Description . 7

3.2 Data Treatment and Descriptive Statistics 8

4 Methodology 13

4.1 Least-Square Monte Carlo Method 13

4.2 Neural Networks . 17

4.2.1 Overview . 17

4.2.2 Learning Algorithm . 20

4.3 Calibration . 23

5 Results 28

6 Conclusion and Further Research 31

Bibliography 33

Appendix A 36

viii

1 Introduction

The purpose of this study is to compare two different methods to price American

Put options. These kind of options give the owner of the contract the right, but not

the obligation, to exercise the option at any time, as opposed to European options

that only give the right to exercise the option at a pre-defined fixed date. That is,

we have an optimal stopping time problem, and a closed form solution to price them

does not exist.

This problem was first studied by Brennan and Schwartz [4] and is recovered on

the literature ever since. See, for instance an overview of different approximation

methods to price American Put options in Zhao [23].

We focus on the comparison of two methods: the Least-Square Monte Carlo

Method, a simulation method first presented by Longstaff and Schwartz [15], and a

machine learning method, Neural Networks.

Recent studies on Neural Networks explore mainly European options. That is

the case for Hutchinson et al. [10], the first article where Neural Networks are trained

to price options, and Yao et al. [22].

This study focuses on American options instead and is based on a larger market

dataset when compared to the existent Neural Networks’ recent literature.

The rest of the text is organized as follows. Section 2 presents the state of the

art on the topic, Section 3 explains the data selection process and its descriptive

statistics, Section 4 explains the methodology and also architecture of the Neural

Networks, Section 5 presents and discusses the results. Finally, Section 6 concludes

and suggests further developments.

1

2 Literature Review

This dissertation focuses its study on American put options, but an introductory

review of European options is done in this section as these types of options are the

core of options pricing. As Black and Scholes [2] derived in their article, a closed

form valuation formula exists for both European call and put options. We recall the

put option price formula:

P (x, t) = −xN(−d1) + k exp −rTN(−d2) , (1)

where P (x, t) is the price of a call option, at time t given the underlying price x, k

is the strike price, r is the risk-free interest rate, T is the time to maturity and N(.)

is the standard normal distribution.

The derivation of this formula is based on some assumptions that are not nec-

essarily true in the stock market, such as no transaction costs nor taxes, constant

interest rate, constant volatility and lognormal returns. Many authors tested the

empirical validity on these assumptions. For example, Schoutens [18] shows, on

multiple data, the empirical distribution of asset returns exhibits fat tails and neg-

ative skewness. The author also states that volatility is not constant, changing

stochastically over time. Cont [7] also explores the same issues and presents a set

of statistical properties of asset returns, as is the case, for example, for absence of

autocorrelations and heavy tails.

To what regards American options, Merton et al. [16] show that an American call

option with no dividends “is always worth more ‘alive‘ than ‘dead‘.“, as the price of

the option is always higher than the payout of that option. Even if this conclusion

2

does not hold for American call options with dividends (because dividends can cause

a positive probability of exercising the option before the maturity date), the truly

hard question has always been that of valuing put options. It is for put options that

the quest for the optimal stopping time is more relevant and there are no closed-form

solutions for this pricing problem.

Merton et al. [16] show American put options always have a positive probability

of prematurely exercising the option (even in a no dividends scenario), and conclude

that the valuation of an American put is a complicated analytical task. With no

closed-form solutions available, one must rely on either numerical or simulation

methods.

Zhao [23] compares eight different valuation methods on a one-dimensional scale.

The author studied both call and put options. The numerical methods considered

are the binomial tree method, trinomial tree method, quadratic approximation,

explicit finite difference and implicit finite difference, and the binomial method has

the best overall performance in terms of both time and accuracy. With regards

to the Monte Carlo methods, simulated tree from Broadie et al. [5], the bundling

technique from Tilley [20] and the Least-Square Monte Carlo Method from Longstaff

and Schwartz [15] are compared, with LSM showing the best results also in terms

of both accuracy and execution time. Although simulation methods tend to be

very slow when compared to numerical methods, they are widely used when the

complexity of the option grows.

Here we focus on the Least-Square Monte Carlo Method and compare it against a

Neural Network based machine learning technique. The Longstaff and Schwartz [15]

3

Least-Square Monte Carlo Method approach approximates the value of continuation

using Ordinary Least Squares to recursively determine the conditional expectation

for each time step along a simulated path. The advantages of this method are its ac-

curacy and the ability to adapt to multi-dimensional pricing, while the disadvantage

is its execution time.

As previously mentioned, we propose the usage of Neural Networks for pricing

American put options. Kelly et al. [11] and Kohler et al. [12] both studied this

theme. When contrasting to this study, Kelly et al. [11] used less than 10% of our

total observations, while Kohler et al. [12] simulated the observations and studied

higher dimension options.

Using the definition in Haykin [9]:

“A neural network is a massively parallel distributed processor made

up of simple processing units that has a natural propensity for storing

experiential knowledge and making it available for use.“

Neural Networks are designed to learn a particular task given former experiences.

They are used, for instance, in pattern recognition networks used for spam e-mail

management, for instance, are an example of Neural Networks. In this case spam

e-mail inbox have a learning algorithm that is able to continuously learn from the

interaction between users and their spam inbox content.

There are multiple types of Neural Networks, and the types used for option

pricing are: backpropagation networks, Hutchinson et al. [10] and Yao et al. [22],

and feedforward networks, as are Tang and Fishwick [19] and Garcia and Gençay

[8]. Following Hutchinson et al. [10] and Yao et al. [22], approach, we build Neural

4

Networks with a structure as represented in Figure 1. For option pricing models it

is a good fit since we need to train our model with the input variables via a loss

function that will try to learn the relationship between the parameters.

Figure 1: Multilayer Perceptron (from Hutchinson et al. [10])

The first layer, (X1 to Xd), represents the input layer, where d is the number of

input variables. The second layer is the hidden layer, (H1 to Hk), where k is the

number of nodes. Most Neural Networks present a structure with several hidden

layers. Finally, f represents the output variable. Each node in the input layer is

connected to each node of the set of hidden layers by a weight defined by the model

after it is trained.

The particular structure of the Neural Networks of this study and a more detailed

discussion on other characteristics, can be found in the Methodology Section 4.

In the literature there is mixed evidence on whether or not Neural Networks

can outperform other methods. Even in European options the remarks are not

conclusive. For American options, Kelly et al. [11] states Neural Networks can

5

outperform approximation methods, however, both Hutchinson et al. [10] and Yao

et al. [22] have more conservative conclusions. For European options the authors

conclude that the empirical evidence lacks theoretical background. Particularly Yao

et al. [22] tested different types of Neural Networks that yielded different results

when compared to the Black Scholes model.

The advantages on using Neural Networks for option pricing is that this method

can be adapted to a multiple underlying option as well as more exotic options,

and does not rely on the usual Black Scholes assumptions. Neural Networks learn

through data, so they do not make any assumptions on taxes, transaction costs,

volatility or asset return distribution.

To the best of our knowledge this is the first study to compare simulation methods

with Neural Networks when pricing American options. This study contributes to

the literature by using a bigger data set than former papers and by introducing

optimization methods for the Neural Networks structures.

6

3 Data

3.1 Data Description

We have used Bloomberg collected data on 37952 American put options, traded from

December 2018 to March 2019. The individual stocks under analysis are Bank of

America Corp (BAC), Procter and Gamble Company (PG), General Motors (GM)

and Coca-Cola Company (KO), selected because of the high market capitalization

and large trading volume. A company with a high market capitalization has, on

average, a higher trading volume of options than a company with a low market

capitalization and the trading volume of the options has an impact on the true

value of the options on various maturity and strike levels.

For each option, besides daily close prices on the option itself, we collect daily

underlying stock prices, strike prices, maturities, volumes and implied volatilities1.

Besides these metrics, we also need dividends and interest rates. To what regards

the dividends, we retrieve the quarterly dividend paid per share from each company

throughout the period studied. In terms of risk-free interest rate, the US treasury

rate for different maturities is used. For each option, we select the rate with the

closest maturity to that option2.

1For implied volatility, we used the value determined by Bloombergs’ quantitative analytics
department ”Equity Implied Volatility Surface”.

2The data source is the Board of Governors of the Federal Reserve System (US) and was
retrieved from FRED, Federal Reserve Bank of St. Louis.

7

3.2 Data Treatment and Descriptive Statistics

We applied a liquidity filter - minimum amount of 20 trades per trading day - to

ensure our analysis is based upon reliable data. Also, due to Bloomberg gathering

information on trades during the last day of trading of an option, some trades

presented zero maturity, so we had to eliminate those observations, as maturity

cannot be equal to zero. Finally we eliminated all missing values. From the original

37952 observations we ended up with 21111, which is still a much larger number

than what can be found in the literature.

Table 1 presents basic statistics of our input variables - implied volatility, mon-

eyness (equal to the ratio between stock price and strike price), maturity (time to

maturity), relative dividends (also known as dividend yield) and the interest rate

(risk-free rate).

Implied
Volatility

Moneyness Maturity
Relative
Dividends

Interest
Rate

Mean 0.296 1.056 113.201 0.034 0.024
Std Dev 0.105 0.162 171.882 0.008 0.001

Min 0.030 0.565 1.000 0.020 0.023
25% 0.235 0.976 15.000 0.025 0.024
50% 0.288 1.025 38.000 0.038 0.024
75% 0.337 1.096 134.000 0.040 0.025
Max 2.862 2.268 779.000 0.048 0.028

Table 1: Statistics of Variables

We have considered as at the money (ATM) those options with 5 percent devia-

tion from the current stock price. In put options, an option is in-the-money (ITM)

if the stock price is below the strike price, which means that the moneyness, defined

before as stock price divided by strike price, is below 1. To sum up, below the

8

threshold are ITM options, and above the threshold are out-of-the-money (OTM)

options. Figure 2 shows the frequency of moneyness, and Table 2 shows the percent-

age of each category in each company. The distribution is heavily centered around

approximately 1.

Figure 2: Moneyness Frequency

ITM ATM OTM
BAC 18% 33% 49%
GM 18% 43% 39%
KO 11% 58% 31%
PG 5% 71% 24%

Total 16% 45% 39%

Table 2: Moneyness by Company

We also have many extreme values in OTM options that influence our Machine

Learning model. The box plot showing these values can be seen in the appendix,

Figure A2. We can observe in Figure 3 that, as expected3, our maturity is heavily

skewed and is almost fully concentrated in maturities below 1 year.

Table 3 shows the percentages that help understand this issue that can influence

our Machine Learning model precision when learning with extreme values. The box

plot for the maturity can also be seen in the appendix, Figure A3, and emphasizes

3Short-term and ATM maturities are, by far, the most traded options in the market.

9

Figure 3: Maturity Frequency

this fact.

<1 Month 1-6 Months >6 Months
42.72% 39.16% 18.12%

Table 3: Maturity Percentages

In Figure 4 we can observe the surface of the put price with respect to both

moneyness and maturity. In the money options are with no surprise the highest

valued options, regardless of maturity.

Figure 4: Put Price vs Maturity & Moneyness

In terms of interest rate, we retrieved the daily values for each maturity from the

10

US Federal Reserve System. Since our sample consists of only three months, there

are no big variations in the term structure throughout the 3 months. Moreover, we

can see in Figure 5, term structure is quasi-flat.

Figure 5: Interest Rate Term Structure at 17th March 2019

Dividend yield values can be seen in Table 4, where the Dividend Yield column

shows the average yield in the 3 month sample for each company.

Table 4 shows the mean of each variable per company. As we can observe in

our data, each company has different characteristics on each variable. For example,

during the period of the data, GM was facing a higher volatility in the stock market,

that should be felt at the same time in the option market, thus having the highest

volatility between the 4 companies. The difference in each company will positively

impact our Machine Learning model, since it won’t overfit to the same pattern of

data, in the case our observations were from a single company.

Also refer to Table 5 to observe the median values. The differences between

median and mean values emphasizes the fact that our data represents mainly ITM

options with a low maturity but still contains extreme values that influence the

mean of the variables.

11

Put
Price

Implied
Vol

Spot Strike Moneyness Mat.
Div
Yield

Int
Rate

BAC 1.258 0.306 27.618 26.021 1.090 132.873 0.022 0.025
GM 1.902 0.336 37.319 36.175 1.050 109.743 0.041 0.024
KO 1.364 0.196 47.016 45.827 1.034 115.196 0.034 0.024
PG 2.354 0.221 92.891 90.32 1.033 77.076 0.031 0.024

Table 4: Mean of variables per company

Put
Price

Implied
Vol

Spot Strike Moneyness Mat.
Div
Yield

Int
Rate

BAC 0.620 0.279 28.306 26.500 1.047 49.000 0.021 0.024
GM 1.080 0.319 38.050 36.500 1.024 36.000 0.040 0.024
KO 0.780 0.182 46.960 46.000 1.019 43.000 0.034 0.024
PG 1.650 0.217 91.397 90.050 1.014 35.000 0.031 0.024

Table 5: Median of variables for each company

In order to train and test our Neural Networks we need to have a training set and

a test set. As is common in machine learning techniques, the division of both data

sets was made randomly, with the training set consisting on 80% of the full data

set. Using Kolmogorov-Smirnov tests we have checked the distributions of test and

training set are similar, feature by feature4. In Table 6 we observe that all features

seem to have a high p-value, which allows us not to reject the hypothesis that both

sets are drawn from, and represent, the same distribution.

Put
Price

Implied
Volatility

Spot Strike Maturity

p-value 0.191 0.828 0.572 0.401 0.317
Statistic 0.02 0.01 0.01 0.02 0.02

Table 6: Kolmogorov-Smirnov by feature

In appendix, Figure A6, the distribution of each variable is drawn for both sets.

4It tests whether 2 data sets are drawn from the same distribution. If the Kolmogorov-Smirnov
statistic is small or the p-value is high, we cannot reject the hypothesis that the distributions of
the two data sets are the same. We only test the important variables, leaving interest rate and
dividend yield off, since the values do not variate much.

12

4 Methodology

4.1 Least-Square Monte Carlo Method

The Least-Square Monte Carlo Method is an algorithm that combines standard

Monte Carlo methods, by simulating n random paths, with a least-square approach

in order to obtain the optimal stopping times for American put options. It is a back-

wards algorithm that calculates the optimal stopping time comparing the exercise

value of the option and its continuation value5.

Although American options can be exercised continuously, we considered a dis-

crete number k of time steps. The algorithm starts at expiration date tk and goes

to t0 in order to obtain a cash-flow matrix with all steps for all paths.

In the following we describe the LSM using an illustrative example. We consider

5 paths and 5 time steps.

Spot Strike
Maturity
(in years)

Interest
Rate

Dividends Volatility

100 105 1 0.06 0.06 0.2

Table 7: Parameters of Put Option

The first step (Step 1) consists in simulating the paths of the underlying stock

price, as shown in Table 9a.

Step 2 of the method is to compute the cash-flow matrix for time tk. For tk, the

exercise cash-flow of each path is just the payoff of exercising, or not, the option:

CFtk = MAX(0, K − Stk) (2)

5At each point in the time discretization grid the continuation value is the estimated value of
holding the option at that point.

13

Where K is the strike price of the option and Stk is the stock price at tk. For each

tk, we will compare the exercise value to the continuation value. Table 9b shows the

cash flows at time 5.

The cash flow matrix at time tk, the exercise value is known, but the continuation

value has to be estimated through a regression of the cash-flow at time tk and

measurable functions of the stock price at time tk. In this study we use a 5 degree

polynomial to estimate the continuation value of the option:

E[Y |X] = β0 +
5∑

n=1

βnX
n + ε (3)

Where Y is the continuation value, X is the value of the stock in the simulation,

and ε the residual error. Step 3 is to estimate the continuation value. In Table 9c

we have the values for time t = 4. Note that, as in Longstaff and Schwartz [15], we

only take the in the money paths.

Regressing for time 4, we have the values for all the β in our regression, and can

now obtain the estimated continuation value for each path.

In Step 4 we compare the estimated value and the exercise value at time 4, as

presented in Table 9d, and take the maximum between both values. Note that the

exercise value has to be discounted back to the correct time, so we apply a discount

rate derived from the interest rate and the number of time steps defined.

The cash flow matrix at time 4 has a particular detail. If in a single path, the

option was exercised at time 4, all subsequent cash flows must be equal to zero, since

the option is no longer in the buyers hands.

If we recursively repeat Step 3 and Step 4 for all t, we will obtain a final cash

14

flow matrix. By discounting the matrix to t = 0 on each path, we obtain the value

for each option. In Table 9f we can observe the final discounted matrix giving us a

price for each path.

Taking the mean of all values in column one of Table 9f, we obtain the price for

the option at time t = 0.

15

Paths t=0 t=1 t=2 t=3 t=4 t=5
1 100.0 91.48 80.59 65.38 60.99 70.26
2 100.0 110.21 105.49 102.34 97.08 92.42
3 100.0 103.39 120.81 136.38 136.31 132.06
4 100.0 111.08 128.12 160.46 174.79 154.19
5 100.0 92.2 97.88 102.52 109.82 117.21
6 100.0 98.28 85.47 76.93 78.21 82.03

(a) Simulated Paths

Paths t=1 t=2 t=3 t=4 t=5
1 - - - - 34.74
2 - - - - 12.58
3 - - - - 0.00
4 - - - - 0.00
5 - - - - 0.00
6 - - - - 22.97

(b) Cash Flow Matrix at time 5

Paths Y X
1 34.74 60.99
2 12.58 97.08
3 - -
4 - -
5 - -
6 22.97 78.21

(c) Regression params for time 4

Paths Exercise Cont.
1 44.01x.988 34.33
2 7.92x.988 12.43
3 - -
4 - -
5 - -
6 26.79x.988 22.69

(d) Exercise vs Continuation at time 4

Paths t=1 t=2 t=3 t=4 t=5
1 - - - 0.00 34.74
2 - - - 12.43 0.00
3 - - - 0.00 0.00
4 - - - 0.00 0.00
5 - - - 0.00 0.00
6 - - - 0.00 22.97

(e) Cash Flow Matrix at time 4

Paths t=0 t=1 t=2 t=3 t=4 t=5
1 41.94 - - - - -
2 11.84 - - - - -
3 1.59 - - - - -
4 0 - - - - -
5 12.65 - - - - -
6 27.08 - - - - -

(f) Discounted Cash Flow Matrix

Table 8: LSM Method Illustration

16

4.2 Neural Networks

4.2.1 Overview

We can think of Neural Networks as an artificial system built to mimic the dynamics

of a human brain. Figure 1, in page 5, can be seen as the interaction between neurons

in the human brain, where the input layer are the signals received by the human

brain. These signals are then processed by, and with the help of, other neurons that

activate different sensors. We can think of these as the hidden nodes (of hidden

layers) that will help determine the output variable6. Note that the architecture of

the Neural Networks allow for more than one hidden layer, however, for simplicity

this section assumes a Neural Network with just one hidden layer.

The nodes in the same layer are not connected to each other, but each node is

connected to each node from the neighbouring layer. This connection is given by

the weighted sum of the values of the previous nodes. Starting with the connection

between the input layer and the first hidden layer, let Xi represent a input node,

and Hk is the k-th node from the hidden layer, then each hidden node is obtained

as,

Hk = φ(

Ni∑
i=1

wk,iXi + bk) , (4)

where wk,i is the weight of the input layer i with respect to the hidden node k, bk is

the bias of the node, and φ is a so called activation function.

The bias is an extra node added to each layer (except the output layer). It

6A structure with more than one hidden layer adds more connections and weights between the
hidden layers only.

17

works as an extra argument to the activation function and is always equal to one,

meaning that the learning algorithm does not get affected by its inclusion7. While

the nodes are connected with the input layer through the weights, the bias node is not

connected to the input layer. The argument of the activation function depends on the

input nodes and the respective weights and is then used to complete the connection

from the input nodes to each hidden node. These steps will be approached in the

subsection focused on the learning algorithm.

It is the activation function that will scale the argument to a different range,

introducing non-linearity and making the model susceptible to non-linear combina-

tions between the input variables.

As in the hidden layer, the output node depends on the activation function, with

the weighted sum of the hidden nodes as the argument. Now that we have a value

for each Hk, the output of the function is given by,

f = φ(
k∑

k=1

vkHk + b) , (5)

where f is the output value, vk is the weight of the node Hk and b is the bias.

Several activation functions have been used in Neural Networks. The most com-

monly used activation function is the sigmoid function that can be seen in Figure 6.

However, Krizhevsky et al. [13] empirically compared it to a nonlinear function

called Rectified Linear Units (ReLUs). The conclusions of the author are that

the ReLUs consistently improve the training time of the Neural Networks without

increasing its error. Furthermore Xu et al. [21] investigated the use of ReLUs and

7See the learning algorithm Subsection 4.2.2 for more detail.

18

Figure 6: Sigmoid Function

other variants, such as Leaky ReLUs. Leaky ReLUs had consistently better results

than the original ReLUs.8 The equation for Leaky ReLUs is:

f(x) =


x, if x > 0.

a ∗ x, otherwise.

(6)

The difference in both activation functions is the negative part of the function,

where, in the case of Leaky ReLUs, a can take a small value, usually in the range

(0.01 to 0.2), while for ReLUs, a is zero. Figure 7 plots both functions.

Figure 7: ReLUs Functions

8The authors conclude that the rigorous theoretical aspect of these empirical results requires
further research.

19

For our Neural Network, we opted for this last activation function (instead of

the traditional sigmoid function), following the most recent literature.

4.2.2 Learning Algorithm

The learning algorithm for Neural Networks was first introduced by Rumelhart et al.

[17]. In order to get the Neural Networks to learn, we need an algorithm that allows

the reduction of estimation error with regards to the correct observations. In the

learning process of a multilayer perceptron, the weights of the nodes are adjusted

by finding a global, or local, minimum in the cost function. The cost function rates

how good the Neural network did in the whole set of observations. Taking Mean

Squared Error as an example of a cost function, we get

C(fj(θ)) =
1

n

n∑
j=1

e2j , for ej = fj(θ)− fj(θ)∗ , (7)

where n is the number of observations, fj is the output that depends on the param-

eters of the model, represented as θ, and f ∗
j is the observed value.

The cost function is minimized using a Gradient Descent optimization algorithm.

This algorithm minimizes the cost function, by adjusting the parameters in the

opposite direction of the gradient. The weights, or parameters, are thus adjusted

by the value defined by the Gradient Descent obtained as,

θ(t) = θ(t− 1)− α 1

n

n∑
j=1

∇ft−1(θ(t− 1)) , (8)

where α is the value of the learning rate. The choice of α should be made carefully

as values near 1 would cause the algorithm to oscillate a lot and miss a global/local

20

minimum in one iteration, whereas values near zero can converge to a non-optimal

solution, and also slow the convergence to a solution. See LeCun et al. [14] for an

overview of learning rate issues.

Our algorithm starts with random weights drawn from the standard normal

distribution. Then for each observation, weights are updated as follows,

∆wk,i+1 = −α∇wk,i, with ∇wk,i =
∂C(f(θ))

∂wk,i

, (9)

where ∇wk,i represents the gradient of the cost function with respect to wk,i. This

value is not known, and we need to know how much a change in wk,i will affect the

error. Apply the chain rule we get,

∂C(f(θ))

∂wk,i

=
∂C(f(θ))

∂outn
× ∂outn
∂argn

× ∂argn
∂wk,i

, (10)

where outn is the output of the node and argn is the input of the node, or also

the argument of the activation function of the node. The first partial derivative

corresponds to the partial derivative of the error function with respect to the output

of observation n, the second corresponds to the partial derivative of the activation

function with respect to the argument of the function and the last corresponds to

the partial derivative of the argument of the activation function with respect to wk,i.

We can, thus, use this chain rule to update the weights in (9).

Following this logic for every observation, the total error of the model will de-

crease. In this dissertation we consider a variation of this algorithm called Stochastic

Gradient Descent, proposed by Bottou [3] to deal with large-scale problems in the

21

standard Gradient Descent algorithm. In this variation, instead of updating the pa-

rameters after iterating the full training set, we set a size for a sample, called batch

size, and update the parameters on each random sample. This process accelerates

the computation time, and is more efficient to use in large data sets, as shown in

LeCun et al. [14] and Bottou [3].

In terms of the data used, the input variables of our Neural Networks are different

from the ones used in the Least-Square Monte Carlo Method method. For Model

1, we exclude interest rate and dividend yield. In machine learning methods, data

is usually scaled to a specific range (0 to 1 for example) in order to increase the

accuracy of the models, and allowing our loss function to find a global, or local,

minimum. The transformation we use is given by,

yi =
xi −Xmin

Xmax −Xmin

, (11)

where xi is the value to normalize, Xmin and Xmax are, respectively, the minimum

and maximum values of the range. This transformation is also done due to the fact

that the input variables have different scales. The output layer consists of the put

price, it is also scaled to the same range as the input variables in the case of Model

1.

The learning algorithm from the multilayer perceptron could be affected by the

different scales of the variables, and the loss function can fail to converge to the

local, or global, minimum. This area is currently an area of research in machine

learning. The problem with finding a local or global minimum was first presented

by Rumelhart et al. [17], where the authors conclude that although the learning

22

algorithm finds a solution in almost every practical try, it does not guarantee that

a solution can be found. In terms of global minimum, Choromanska et al. [6] focus

their study on the loss function non-convexity that leads the learning algorithms

to find a local minimum instead of a global minimum. The authors show that,

although there is a lack of theoretical support for optimization algorithms in Neural

Networks, the global minimum is not relevant in practice because it may lead to

overfitting the model.

In order to minimize the error of a model, we need to calibrate the model to

our data with a beforehand optimization of the parameters. The next section goes

through the structure of the models and values given to the learning algorithm.

4.3 Calibration

Starting with Model 1, we use as input variables the Stock Price, Strike Price,

Implied Volatility and Interest Rate. A simple architecture with only 1 hidden layer

was the choice. In order to train the model, we need to select the number of hidden

nodes. The number of nodes should not be chosen randomly, so we did a test for 3

to 10 hidden nodes and we can see the results in Figure 8.

The comparison between the networks was made through a cross-validation test

where we compared the networks using the mean square error as the comparison

metric,

MSE =
1

n

n∑
j=1

e2j , for ej = yi − y∗i . (12)

where ej is the error of each prediction, with yi representing the prediction of the

model, and y∗i the true value of the option. When comparing the values in Figure 8,

23

Figure 8: Number of nodes

we concluded that the networks with 7,8 and 9 hidden nodes have the lowest variance

in MSE and also the lowest mean values. The structure of Model 1 is now consisting

of 1 hidden layer with 4 input variables, 9 hidden nodes and 1 output node.

In order to start the learning process of the networks, we give random weights

from the normal distribution to the hidden nodes, with mean equal to zero and

standard deviation equal to 0.5. The starting values of the hidden nodes are a ran-

dom choice, and will immediately change after the first learning cycle ends, making

that choice arbitrary. We define the Leaky ReLUs, our activation function, with an

α = 0.1.

We define the number of epochs at 400. An epoch is defined as the complete

dataset training cycle. In terms of the updating rate, commonly referred to as batch

size, we assumed a batch size equal to 64. This means that the weights of the model

will be updated every 64 observations.

We also have to define a learning rate for the learning algorithm inside the Neural

Networks, the Stochastic Gradient Descent. The learning rate is set at 0.005, with

24

a decay per epoch defined as 1e-6. This means that per epoch, the learning rate

will decrease 1e-6. The intuition behind this parameter is that at an initial point,

the steps towards convergence are bigger than the steps taken when you are close

to converge to the local minimum.

A more complex model was also studied, we call it Model 2. When compared

to Model 1, the changes are: number of hidden layers, number of input variables

and number of epochs. Model 2 has 3 hidden layers, with 16, 8 and 4 hidden nodes

in each structure. When observing the learning curve of the model, the decrease is

not as smooth as in Model 1, and does not stop decreasing at 400 epochs, so the

number of epochs was increased to 3000, we illustrate this in Section 5.

In order to decrease the error we made some feature engineering to feed more

valuable information to our model. As we have 4 different companies in our data

set, 4 dummy variables9 were created called ”Company name” (i.e. Company KO).

The introduction of such variables is an alternative to training a different model for

each company. The last variable added is the mean of the put price. This variable

represents the mean of put price in the training set10 by company. Also note that

for Model 2 we did not normalize the output variable11.

In terms of learning curves for Model 1 and Model 2, in Figure 9 we can see the

MSE curve from Model 1 going very fast to 0.001. Model 2 also seems to decrease

very fast but if we take a better look at Figure 10 we see that there is still space

for improvement. Also notable is the high variance when converging to the local

9A dummy variable takes only 0 or 1 as values. In our case, Company KO would be 1 if the
company is Coca-Cola Company and 0 otherwise.

10Note that in the test set, the values for the mean of the put price come from the train set.
11For this reason the MSE values in Figure 9 have different ranges.

25

Figure 9: Learning Curve - Model 1 vs Model 2

optimum.

Figure 10: Learning Curve - Model 2 Zoomed

In order to know the importance that our new features may have in Model 2, we

use a permutation method on each variable. For each variable we sort the column

of the variable randomly, ceteris paribus, run the new predictions in our Model and

compare the new RMSE, given by,

RMSE = MSE0.5 (13)

with the original RMSE from the correct test set, in terms of percentual deviation.

Figure 11 shows the ordered feature importance. When we mix up the interest rate

26

values, the total RMSE increases 27%, which is not as substantial as the absence of

a correct strike price, which increases the RMSE by approximately 6000%.

Figure 11: Model 2 Feature Importance

To what regards the LSM, for each option, the number of paths generated was

1000, and the number of total points in the grid for time is 50. As said previously,

the OLS function is a 5-degree polynomial.

Having the models fine tuned, we are now able to compare the results of all

models.

27

5 Results

In this section we compare our Neural Networks results with the Least Square Monte

Carlo Method using the RMSE as the comparison measure for error and execution

time for comparison of the time spent in each method to price the options.

The methods were applied using the programming language Python, version

3.7.3. Experiments were run on a Macbook Pro 14.1 with an Intel Core i5 2.3 GHz

processor with a memory of 2133 MHz and 8 GB of RAM, running macOS version

10.14.6.

First of all, the calibration time of Model 2 is about 5 minutes due to Tensorflow12

and Keras13 modules from python that substantially increase the calibration time.

After the calibration time, the prediction per option is immediate. LSM takes

about 0.38 seconds to price one option alone. In terms of time, Model 2 has a better

execution time than LSM. If we include the calibration time in the pricing of each

option, the summed value would be an average of 0.07 seconds, less than 20% of the

pricing time per option using LSM. In the case of Model 1, the average value is of

0.03 seconds, 50% less than Model 2.

Model 1 RMSE
BAC 0.166
GM 0.215
KO 0.198
PG 0.457

Total 0.223

Model 2 RMSE
BAC 0.099
GM 0.163
KO 0.139
PG 0.273

Total 0.161

LSM RMSE
BAC 0.112
GM 0.268
KO 0.302
PG 0.400

Total 0.259

Table 10: Results per Company

12Tensorflow is an open-source library used in Machine Learning models, check Abadi et al. [1]
for a deep understanding on why Tensorflow greatly increases time spent in training any Neural
Networks model.

13Keras is a Neural Networks library that is capable of running on top of TensorFlow and other
libraries. It provides an API for building deep learning models quickly and efficiently.

28

In terms of results we can observe that in Table 10 the RMSE is for Model 2

performs better in with respect to our test set. The RSME can be interpreted as

follows: on average, each option price is deviated from the true value by x$. Procter

& Gamble is the company with the highest deviation from the option true value

across the Models. In order to investigate this issue, in Table 11 the result are

ordered by company and moneyness.

Company Moneyness Model 1 Model 2 LSM
BAC ITM 0.257 0.200 0.196

ATM 0.147 0.079 0.096
OTM 0.148 0.046 0.077

GM ITM 0.339 0.300 0.424
ATM 0.199 0.149 0.228
OTM 0.181 0.074 0.224

KO ITM 0.458 0.254 0.487
ATM 0.157 0.130 0.283
OTM 0.175 0.086 0.238

PG ITM 0.613 0.622 0.671
ATM 0.430 0.272 0.385
OTM 0.519 0.144 0.392

Table 11: Results per Company & Moneyness

Procter & Gamble is consistently the worst predictable company across all mod-

els, with a particular emphasis on ITM options. Model 2 however has a better

RMSE when compared to the other models. This error might be explained by the

high volatility and price shocks that occurred to this particular stock in the period

studied. Procter & Gamble had an uncommon 2019 start, with news and profit

warnings that changed the underlying price at a high rate, which might have im-

pacted the high RMSE in all models.

As predicted, the ITM options are consistently worse in each company, due to

the fact that in terms of representation in our data, those options only represent

29

16% of the whole dataset.

Company Maturity Model 1 Model 2 LSM
BAC < 1 Month 0.131 0.089 0.098

1-6 Months 0.106 0.097 0.087
> 6 Months 0.308 0.116 0.166

GM < 1 Month 0.162 0.155 0.195
1-6 Months 0.185 0.174 0.197
> 6 Months 0.338 0.163 0.469

KO < 1 Month 0.160 0.134 0.244
1-6 Months 0.154 0.118 0.167
> 6 Months 0.561 0.182 0.543

PG < 1 Month 0.238 0.248 0.253
1-6 Months 0.380 0.304 0.338
> 6 Months 0.426 0.250 0.904

Table 12: Results per Company & Maturity

In terms of time to maturity, Model 2 consistently predicts better results across

all maturities, with an exception made to BAC and KO in 1− 6 months maturity.

Results are presented across companies and maturities in Table 12.

In terms of total RMSE, Model 2 is deviated, on average 0.16$ per option, while

Model 1 is deviated, on average, 0.22$ per option, and the LSM has a deviation of

0,26$ per option. This means that for our randomly selected test set, the Neural

Networks did outperform a simulation method that, as said in the literature review

of option pricing, is one of the most accurate methods to price American options.

30

6 Conclusion and Further Research

Neural Networks have advantages and disadvantages, when it comes to option pric-

ing. They need a lot of data to train, which means that more exotic options (Over

the Counter options have lower volume trades than common options) cannot be

priced as fairly as more traditional options.

In terms of time, while Least-Square Monte Carlo Method produced a good

amount of time to price a single option, if a more complicated jump process, for

example with stochastic volatility, is added to the LSM, the model takes a higher

amount of time to price a single option. Even using a big amount of paths will

increase exponentially the execution time.

Should the Neural Networks gather good results, private investment companies

can start using them, in order to price an option and complete a trade instanta-

neously. Once calibrated, the models have an immediate execution time, and this

study demonstrates that Neural Networks can beat traditional methods in terms of

performance. One should not forget that Neural Networks learn with past data, so

any changes to the future composure of financial markets, for example, a big financial

crisis, might modify the values of worldwide options, leading to miscalculations.

In terms of limitations of the analysis here presented, the number of options used,

although larger than most studies in the literature, is still scarce when compared to

Neural Networks models used in image recognition and other fields of study.

Further research could focus on trying to apply Neural Networks to options with

more than one underlying, and, more interestingly, trying to get the valuation of the

greeks in order to hedge the position of a trade. Also, this study trained a Neural

31

Networks with a data set from 4 different companies, from 4 different sectors and

on a small period. It would be meaningful to research if Neural Networks trained

for a certain sector would have better results, and if a Neural Networks trained on

a complete year would change the outcome of the results.

32

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-

mawat, G. Irving, M. Isard et al. [2016]. Tensorflow: A system for large-scale

machine learning. In 12th {USENIX} Symposium on Operating Systems Design

and Implementation ({OSDI} 16), pages 265–283

[2] F. Black and M. Scholes [1973]. The pricing of options and corporate liabilities.

Journal of political economy, 81(3):637–654

[3] L. Bottou [2010]. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010, pages 177–186. Springer

[4] M. J. Brennan and E. S. Schwartz [1977]. The valuation of american put options.

The Journal of Finance, 32(2):449–462

[5] M. Broadie, P. Glasserman, and G. Jain [1997]. Enhanced monte carlo estimates

for american option prices. Journal of Derivatives, 5:25–44

[6] A. Choromanska, M. Henaff, M. Mathieu, G. B. Arous, and Y. LeCun [2015].

The loss surfaces of multilayer networks. In Artificial Intelligence and Statistics,

pages 192–204

[7] R. Cont [2001]. Empirical properties of asset returns: stylized facts and statis-

tical issues

[8] R. Garcia and R. Gençay [2000]. Pricing and hedging derivative securities with

neural networks and a homogeneity hint. Journal of Econometrics, 94(1-2):93–

115

33

[9] S. Haykin [1994]. Neural networks, volume 2. Prentice hall New York

[10] J. M. Hutchinson, A. W. Lo, and T. Poggio [1994]. A nonparametric approach

to pricing and hedging derivative securities via learning networks. The Journal

of Finance, 49(3):851–889

[11] D. L. Kelly, J. Shorish et al. [1994]. Valuing and hedging american put options

using neural networks. Unpublished manuscript, Carnegie Mellon University

[12] M. Kohler, A. Krzyżak, and N. Todorovic [2010]. Pricing of high-dimensional

american options by neural networks. Mathematical Finance: An International

Journal of Mathematics, Statistics and Financial Economics, 20(3):383–410

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton [2012]. Imagenet classification

with deep convolutional neural networks. In Advances in neural information

processing systems, pages 1097–1105

[14] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller [2012]. Efficient backprop.

In Neural networks: Tricks of the trade, pages 9–48. Springer

[15] F. A. Longstaff and E. S. Schwartz [2001]. Valuing american options by sim-

ulation: a simple least-squares approach. The review of financial studies,

14(1):113–147

[16] R. C. Merton et al. [1973]. Theory of rational option pricing. Theory of Valu-

ation, pages 229–288

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams [1985]. Learning internal

34

representations by error propagation. Technical report, California Univ San

Diego La Jolla Inst for Cognitive Science

[18] W. Schoutens [2003]. Lévy processes in finance: pricing financial derivatives

[19] Z. Tang and P. A. Fishwick [1993]. Feedforward neural nets as models for time

series forecasting. ORSA journal on computing, 5(4):374–385

[20] J. A. Tilley [1993]. Valuing american options in a path simulation model. In

Transactions of the Society of Actuaries. Citeseer

[21] B. Xu, N. Wang, T. Chen, and M. Li [2015]. Empirical evaluation of rectified

activations in convolutional network. arXiv preprint arXiv:1505.00853

[22] J. Yao, Y. Li, and C. L. Tan [2000]. Option price forecasting using neural

networks. Omega, 28(4):455–466

[23] J. Zhao [2018]. American option valuation methods. International Journal of

Economics and Finance, 10(5)

35

Appendix A

Figure A1: Volatility Density

Figure A2: Moneyness Boxplot

Figure A3: Maturity Boxplot

36

Figure A4: Volatility Boxplot

Figure A5: Dividend Yield Boxplot

Table A1: Correlation Matrix

Figure A6: Kolmogorov-Smirnov by feature

37

