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Abstract
Background and Objectives
Huntington disease is a rare neurodegenerative disorder with no disease-modifying therapies.
This study aimed to quantify longitudinal changes in UnifiedHuntington’s Disease Rating Scale
(UHDRS) scores and evaluate their susceptibility to placebo response, enhancing our un-
derstanding of disease progression and ability to optimize future trials.

Methods
Weused data from the Enroll-HDnatural history study (NCT01574053) and theGENERATION
HD1 phase 3 clinical trial (NCT03761849) tomodel disease progression and placebo response for
UHDRS scores, which are commonly used to evaluate disease progression in clinical trials.

Results
We included 8,071 Enroll-HD participants (mean baseline age: 51.4 years, 51.5% female) to
develop a natural history progressionmodel using baseline characteristics as predictive covariates.
This model was then used to predict natural history progression of 260 participants from the
GENERATION HD1 placebo arm (mean baseline age: 48.7 years, 43.5% female).

The progression measured by Total Functional Capacity (TFC) in the GENERATION HD1
placebo arm aligned with predicted natural history (within 95% CI), indicating no significant
placebo response. However, significant improvements (outside the 95% CI of the model) were
observed after baseline for Total Motor Score (TMS), Symbol Digit Modalities Test (SDMT)
score, and Stroop Word Reading (SWR) score. The improvement in TMS persisted until the
end of the dosing period (week 69), converging to natural history predictions at subsequent
follow-up visits (weeks 85 and 101), suggesting a placebo effect. By contrast, cognitive scores
(SDMT and SWR) showed sustained significant improvement (outside the 95% CI) up to the
final follow-up visit at week 101, likely due to practice effects from the more frequent testing
schedule in GENERATION HD1 compared with the annual assessments in Enroll-HD.
Consequently, the composite UHDRS (cUHDRS) score, a linear combination of TFC, TMS,
SDMT, and SWR, is influenced by both placebo and practice effects.

Discussion
Our results suggest that clinical scores in Huntington disease trials are susceptible to long-term
placebo responses. These effects should be considered in future trial designs, especially when
comparing trial data with natural history studies. Although based on the largest Huntington’s
trial, our results rely on limited placebo data andmay not generalize to other trials with different
populations, treatments, and designs.
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Introduction
Disease progression in Huntington disease (HD) is complex
and multifaceted, characterized by psychiatric disturbance,
motor dysfunction, and cognitive and functional impairment.
These changes can be assessed using various clinical scores that
are part of the Unified Huntington’s Disease Rating Scale
(UHDRS),1 such as the Total Functional Capacity (TFC), Total
Motor Score (TMS), Symbol Digit Modalities Test (SDMT),
and Stroop Word Reading (SWR). Moreover, these scores can
be integrated into a composite UHDRS (cUHDRS) score.2

Currently, there is no approved disease-modifying therapy for
HD. As with other rare diseases, numerous challenges exist in
developing novel treatments, and there is a pressing need to
optimize clinical trials in HD. This can be accomplished by
more precisely identifying patients who are likely to exhibit
disease progression during the trial period and determining
the most appropriate end point for a specific patient pop-
ulation. Furthermore, sample size calculations typically rely
on real-world data, and the impact of placebo response on the
ability to differentiate a treatment effect from a placebo effect
is not well understood. Therefore, a deeper understanding
and quantification of longitudinal changes in clinical scores
and placebo response are important steps in improving the
design and analysis of clinical trials for HD.

Mathematical and computational methods have played an im-
portant role in advancing our understanding of disease pro-
gression in HD. One primary focus of these approaches has been
predicting motor onset. The expansion of the cytosine-adenine-
guanine (CAG) repeat lengthens the encoded polyglutamine
segment of the huntingtin protein. It has been shown that the
length of the CAG repeat is a strong predictor of age at motor
onset,3 with various groups characterizing a mathematical re-
lationship between CAG repeat length and the age at motor
onset that accounts for over half of its variance.4-6 Numerous
studies have extended the prediction of motor onset beyond
CAG repeat length by incorporating longitudinal clinical and
imaging data7 and also by deriving a prognostic measure for
predicting disease progression and risk of motor diagnosis in
premanifest individuals.8,9 These studies have significantly im-
proved our prognostic capability concerning age at onset in HD,
a relevant achievement, because identifying patients who are
likely nearing disease onset is essential for implementing clinical
interventions early in the course of the disease, when preventing
neuronal death and preserving function aremost likely to happen.

In the past years, there has been a growing emphasis on
expanding the assessment of HD beyond motor measures.
Numerous studies have incorporated biological, clinical, and
functional evaluations, including the proposal of a new
staging system: the Huntington’s Disease Integrated Staging
System (HD-ISS).10 Disease progression models taking into
account various aspects of the disease have been proposed.
Disease progression in HD has been suggested to happen as
a series of states with increasing severity.11,12 Predictive
features of disease progression have been identified,13-15 and
different disease trajectories have been categorized.15

Moreover, many studies have established the link between
changes in features extracted from brain imaging or mo-
lecular biomarkers and clinical progression.16-20 These
efforts, along with the availability of large natural history
studies such as Enroll-HD,21 have substantially improved
our understanding of disease progression in HD and the key
characteristics underlying individual variability in disease
progression.

In this study, we developed a mathematical framework to
investigate and quantify the natural history progression and
placebo response in HD.We use data from Enroll-HD to infer
optimal disease trajectories, quantify patient variability in
progression rate, and predict progression based on patient
characteristics. To gain a deeper understanding of placebo
response in HD, we compared the progression in Enroll-HD
(annual visits) with data from short-interval follow-up placebo
data (GENERATIONHD1).22 Through this comparison, we
were able to characterize and quantify placebo response, that
is, the variations in disease progression between natural his-
tory and the placebo arm of a pivotal trial. Finally, we show
that by quantifying both natural history progression and
placebo response, we can simulate placebo arm outcomes for
patient populations with different inclusion criteria.

Methods
Standard Protocol Approvals, Registrations,
and Patient Consents
The studies were conducted in accordance with the Decla-
ration of Helsinki. Detailed descriptions of the study proto-
cols have been previously published for the Enroll-HD
study (ClinicalTrials.gov Identifier: NCT01574053)21 and
the GENERATIONHD1 study (ClinicalTrials.gov Identifier:
NCT03761849).23

Glossary
BMI = body mass index; CAG = cytosine-adenine-guanine; CAP = CAG-age product; CAP = CAG-age-product; cUHDRS =
composite UHDRS;DCL = diagnostic confidence level;HD =Huntington disease;HD-ISS =Huntington’s Disease Integrated
Staging System; IS = independence scale; PIN = normalized prognostic index; SDMT = Symbol Digit Modalities Test; SWR =
StroopWord Reading;TFC = Total Functional Capacity; TMS = Total Motor Score;UHDRS = Unified Huntington’s Disease
Rating Scale.
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Study Cohorts
Natural history data used in this work were generously provided
by the participants in the Enroll-HD study andmade available by
CHDI Foundation, Inc. Enroll-HD is a global clinical research
platform designed to facilitate clinical research in Huntington
disease.We used data fromEnroll-HD (NCT01574053) version
PDS 6. Our selection criteria included individuals with an HD-
ISS Stage greater than 1 and at least one follow-up visit, which
was conducted annually. In addition, we selected only those
individuals who had all the measurements of the baseline clinical
scores and covariates used in the model (in the Covariate Se-
lection section). Less than 3% of potential participants were
excluded because of missing covariate measurements, and no
imputation methods were applied. This resulted in a total of
8,071 individuals being selected. While participants were fol-
lowed up to 10 visits, it is important to note that most individuals
had fewer than 3 follow-up visits.

To evaluate potential placebo response in HD, we used data
fromGENERATIONHD1 (NCT03761849).22 This double-
blind Phase III study was designed to assess the efficacy and
safety of tominersen in patients with HD. The study enrolled
791 adults, with the following overall inclusion criteria: age
between 25 and 65 years, diagnostic confidence level
(DCL) = 4, independence scale (IS) score ≥70, CAG
length ≥36, CAG-age product (CAP) > 400, body mass index
(BMI) between 16 and 32 kg/m2, and weight exceeding 40 kg.
More details regarding the inclusion and exclusion criteria are
available in the protocol (sections 4.1.1 and 4.1.2).22 Partic-
ipants were evenly distributed into 3 groups: a placebo group
and 2 active groups that received tominersen at 2 different
dosing regimens. Patient monitoring occurred every 8 weeks.
Based on an overall benefit-risk assessment by an independent
data monitoring committee, dosing was halted after most of
the patients had completed 69 weeks of the trial. Patients
continued to be followed until the 101th week. For the pur-
pose of this analysis, only participants from the placebo group
(n = 260) were included. Minimal dropout was observed in
the early assessments (approximately 3% at weeks 5 and 21),
with dropout rates increasing to approximately 10% at week
69 when dosing was halted and 23% by the final follow-up visit
at week 101.

A comparative analysis of the baseline characteristic distri-
bution between both cohorts can be found in eFigure 1 and
the study by McColgan et al.22 Overall, there was good con-
sistency in the distribution of key characteristics and baseline
scores between GENERATION HD1 and Enroll-HD par-
ticipants (eFigure 1). More specifically, GENERATIONHD1
participants had a higher education level (EDU) and were less
advanced in the disease (as indicated by shorter disease du-
ration and higher TFC scores) compared with Enroll-HD
participants. We evaluated the impact of applying the GEN-
ERATION HD1 selection criteria to the Enroll-HD cohort.
We observed that this adjustment did not significantly alter
the overall results. Therefore, no covariate adjustment or

statistical balancing between both cohorts was performed in
our analysis.

Mathematical Model
Our approach consists of 3 steps. We first estimate the disease
trajectories for each individual score (TFC, TMS, SDMT, and
SWR) throughout the course of the disease. For that, we fitted
a generalized logistic model24 with the lower and upper
bounds as free parameters, allowing for a wide range of pos-
sible trajectories. This approach enabled us to consider mul-
tiple trajectory shapes, including exponential, logistic, linear,
and combinations thereof, selecting the one that best fit the
data. Second, we determine the variability in the rate of pro-
gression and identify which covariates are predictive of this
progression rate. In both analyses, we use data from Enroll-
HD. Finally, we compare natural history progression with
GENERATION-HD1 placebo arm data to quantify placebo
response.

Our analysis involved specifying a hierarchical Bayesian
model. This model incorporated fixed effects for the model
structure and covariate coefficients, as well as random
effects to account for subject-level variability. To implement
our model, we used the probabilistic programming language
Turing.jl,25 which enables us to perform full Bayesian in-
ference. Specifically, we used Hamiltonian Monte Carlo,
a Markov chain Monte Carlo method, to generate samples
from the posterior distribution. Model parameters can be
found in eTables 1–4, and more details are available in
eAppendix 1. Hierarchical Bayesian modeling offers a robust
approach to handling missing data by integrating un-
certainty into the posterior distributions. However, it relies
on the assumption that dropout occurs completely at ran-
dom. While all participants are taken into account when
fitting the model parameters, some participants have miss-
ing visits. If missing visits are related to the disease status of
the participants, this assumption may introduce bias into
the analysis.

Covariate Selection
Patient characteristics at baseline were evaluated as potential
predictive covariates for both the progression rate and mag-
nitude of placebo response. The following covariates were
included: baseline levels of clinical scores or disease stage
(TFC, TMS, SDMT, SWR, IS, HD-ISS), patient de-
mographics (sex, height, weight, BMI, education level, age),
co-medication (such as use of tetrabenazine, antidepressant,
or antipsychotic), and disease-specific information (CAG,
CAP). A linear relationship between the covariates was tested
as predictive factors. Nonlinear relationships between the
covariates were not addressed in this analysis.

Covariate selection was based on the posterior distribution of
each covariate coefficient βj. Covariates predictive of pro-
gression rate were considered important if the 95% posterior
distribution of their coefficient βj did not include 0. For
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covariates predictive of placebo response, a threshold of 80%
was used. Conversely, if the distribution included 0, the
covariates were deemed unimportant and subsequently re-
moved from further analysis. Covariate selection was per-
formed independently for each clinical score.

To address the challenge of testing multiple covariates and
account for the inclusion of irrelevant predictors, we used the
horseshoe prior.26,27 This prior was chosen for its ability
to mitigate overfitting when assessing a large number of
covariates.

A weighted linear combination of the selected covariates was
used as a predictor of the progression rate and magnitude of
placebo response for each clinical score. More detailed in-
formation can be found in eAppendix 1.

Software
Figure generation and statistical analysis were performed in
Julia (version 1.10.5).28

Source Code
The source code to run the analysis, based on simulated data,
can be found at github.com/mboareto/disease_progression_
modelling.

Data Availability
Enroll-HD periodic data set 6 (PDS6) is accessible through
the Enroll-HD website (enroll-hd.org/).

For clinical trial studies, qualified researchers may request
access to individual patient-level clinical data through a data
request platform. At the time of writing, this request plat-
form is Vivli (vivli.org/ourmember/roche/). Up-to-date
details on Roche’s Global Policy on the Sharing of Clinical
Information and how to request access to related clinical
study documents can be found at go.roche.com/data_shar-
ing. Anonymized records for individual patients across more
than one data source external to Roche cannot, and should
not, be linked because of a potential increase in risk of pa-
tient re-identification.

Figure 1 Differences in Functional, Motor, and Cognitive Trajectories

(A) Schematic illustration of the disease trajectory fitting
procedure. By treating the lower and upper bounds of the
generalized logistic model as model parameters, we evalu-
ated multiple potential disease trajectories. Inset figures
depict extreme examples: exponential, logistic, and linear
models. More details can be found in eAppendix 1. (B) TFC
and TMS are best characterized by logistic-like trajectories
(low lower and low upper bound values) while cognitive
scores (SDMT and SWR) are best characterized by
exponential-like trajectories (low lower and high upper
bound values). (C) Fitted trajectories for TFC, TMS, SDMT
score, and SWR score. Dots at the extreme represent mini-
mum and maximum score levels in the data. Dashed lines
represent the median and 90% interval. In contrast to other
scores, TMS values increase with the progression of the
disease. These trajectories provide an average representa-
tion of the expected progression over the course of the
disease (time). SDMT = Symbol Digit Modalities Test; SWR =
Stroop Word Reading; TFC = Total Functional Capacity;
TMS = Total Motor Score.

Neurology | Volume 104, Number 10 | May 27, 2025 Neurology.org/N
e213646(4)

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.n
eu

ro
lo

gy
.o

rg
 b

y 
U

ni
ve

rs
id

ad
e 

de
 L

is
bo

a/
Po

rt
ug

al
 o

n 
11

 J
ul

y 
20

25

https://github.com/mboareto/disease_progression_modelling
https://github.com/mboareto/disease_progression_modelling
https://enroll-hd.org/
https://vivli.org/ourmember/roche/
https://go.roche.com/data_sharing
https://go.roche.com/data_sharing
http://neurology.org/n


Results
Disease Progression Trajectories of Functional,
Motor, and Cognitive Decline
To determine the disease progression trajectories for each
clinical score over the course of the disease, we analyzed
natural history data from Enroll-HD. We screened for

multiple trajectory shapes, including exponential, logistic,
linear, and combinations thereof, selecting the one that best fit
the data (more details in eAppendix 1 and Figure 1A). This
method was independently applied to each UHDRS clinical
score (TFC, TMS, SDMT, SWR). Our analysis revealed that
TFC and TMS are best characterized by logistic-like trajec-
tories while cognitive scores (SDMT and SWR) display an

Figure 2 Baseline Characteristics Can Identify Patients More Likely to Progress

(A) Heatmap illustrates the relevance
of each covariate in predicting pro-
gression rate for the respective clinical
scores. Darker shades indicate a stron-
ger impact. Estimated coefficient values
have been standardized according to
the average progression rate to enable
comparison between different clinical
scores. Red shades indicate an increase
in the rate of progression while blue
shades indicate a decrease. (B) Cross-
validation analysis showing changes in
TFC, TMS, SDMT score, and SWR score
from baseline for individuals selected
from Enroll-HD (validation set). Patients
were categorized into 50% more likely
and 50% less likely to progress based
on the model’s predictions using base-
line covariates. Lines represent the av-
erage changes from baseline while the
shaded area denotes a 95% CI across
100 cross-validation iterations, using
70% as training data and 30% as vali-
dation data from Enroll-HD. SDMT =
Symbol Digit Modalities Test; SWR =
Stroop Word Reading; TFC = Total
Functional Capacity; TMS = Total Motor
Score.

Figure 3 Correlation Among Rates of Functional, Motor, and Cognitive Decline

(A) Pearson correlation coefficients for the predicted progression rates among TFC, TMS, SDMT score, and SWR score. (B) Associations between the one-year
changes in TFC, TMS, SDMT score, and SWR score for individuals selected from the Enroll-HD database. Gray dots represent the change in each clinical score
after 1 year for individual patients while the blue line illustrates the linear fit of the relationship between changes in each score. Insets in the top right corner of
each subplot display the correlation coefficients for the respective score changes. SDMT = Symbol Digit Modalities Test; SWR = Stroop Word Reading; TFC =
Total Functional Capacity; TMS = Total Motor Score.
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exponential-like decline (Figure 1, B and C). These findings
indicate that different clinical scores evolve at distinct rates
over the course of the disease.

Predicting Rate of Clinical Decline
After defining disease trajectories for each clinical measure-
ment, we further explored whether baseline patient charac-
teristics could predict the rate at which participants from the
Enroll-HD cohort progress along these predefined trajecto-
ries. Previous studies have shown that baseline score levels,
CAP, CAG length, and co-medication are predictive of pro-
gression rate.13,14 Based on these studies, we selected 15 pa-
tient characteristics representing disease stage, patient
demographics, co-medication use, and disease-specific in-
formation as potential predictive covariates to be evaluated
(Figure 2A, Methods).

Many covariates exhibit high correlations with each other
because they often represent similar aspects of the disease. For
instance, baseline score levels indicate the stage of the disease
and are, therefore, highly correlated. This poses limitations
when interpreting the relevance of a covariate based on their
coefficients. It is important to note that a low coefficient for
a correlated covariate does not imply its irrelevance because
its effect might be represented by other covariates. Keeping
these limitations in mind, we observed that, overall, the most
relevant covariates include the stage of the disease (HD-ISS
and baseline clinical scores), disease-specific characteristics

(CAG, CAP), and the use of tetrabenazine and antipsychotics
while patient demographics (sex, BMI, education, age) have
small relevance.

To validate the predictive nature of these baseline character-
istics on progression rates, we performed a cross-validation
analysis by randomly dividing the Enroll-HD data set into
a 70%–30% training-validation set and repeating this process
100 times. We used the training set to estimate the relevance
of each covariate and then categorized patients in the vali-
dation set into 2 groups, the 50% more likely to progress and
50% less likely to progress based on their predicted pro-
gression rates. We observed a strong separation between these
2 predicted populations, indicating that baseline character-
istics serve as strong predictors of progression rate and can
effectively identify patients who are more likely to experience
disease progression (Figure 2B).

Correlation in Progression Rates Among
Different Clinical Scores
In our initial analysis, we found that functional, motor, and
cognitive scores are best characterized by distinct disease
trajectories (Figure 1), implying that patients may exhibit
varying rates of functional, motor, and cognitive decline
throughout the course of the disease. To further examine this, we
estimated the correlation of predicted progression rates at
baseline (time of entry of the study) among different clinical
scores. Our model predicts a weak correlation in the progression

Figure 4 Placebo Response on Functional, Motor, and Cognitive Scores

This figure illustrates the changes from baseline in (A) TFC, (B) TMS, (C) SDMT score, (D) SWR score, and (E) cUHDRS score. Blue dots and lines indicate the
average data from the GENERATIONHD1 placebo armwhile vertical blue lines represent the standard error. The vertical red linemarks the end of the dosing
period formost patients (after week 69). The blue line shows the prediction based on the natural historymodel, with the shaded area representing the 95%CI.
The dashed line indicates a shift from the mean predictions of the model, demonstrating that by adjusting the model prediction proportionally to an initial
improvement, the progression rate in GENERATION HD1 aligns with the predicted natural history. cUHDRS = composite UHDRS; SDMT = Symbol Digit
Modalities Test; SWR = Stroop Word Reading; TFC = Total Functional Capacity; TMS = Total Motor Score.
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rates between these clinical scores (Figure 3A). By plotting the
relationship between short-term changes in clinical scores from
individuals selected from the Enroll-HD cohort, we further
confirmed that changes in functional, motor, and cognitive
scores are weakly correlated (Figure 3B). These results high-
light the temporal differences in the rate of progression cap-
tured by different clinical end points and emphasize that
individuals who exhibit rapid progression according to one
clinical score may not necessarily exhibit fast progression
according to another.

Placebo Response in GENERATION HD1
To quantify the placebo response, we compared the pro-
gression in the GENERATIONHD1 placebo cohort with their
expected natural history progression. We observed that for the

functional score (TFC), the progression during the trial aligns
with the natural history progression, showing no sign of a rel-
evant placebo response (Figure 4A). By contrast, for the motor
and cognitive measurements, we found that patients in the
placebo arm of GENERATION HD1 have better outcomes
than expected by natural history progression (Figure 4, B–D).
We also noted that this improvement has a fast onset after
treatment initiation and persists throughout the dosing period
of the trial. Moreover, after this initial improvement, motor and
cognitive decline follows the expected rate of decline from
natural history. This finding indicates the presence of a placebo
response that contributes to a noticeable improvement in
motor and cognitivemeasurements within a fewweeks after the
start of the trial, and this improvement persists consistently
throughout the trial duration.

Figure 5 Simulation of Placebo Arms for Different Patient Populations

Changes from baseline in TFC, TMS, SDMT score, and SWR score for patients segregated by (A) HD-ISS, (B) PIN, (C) CAP, and (D) age. For each scenario, we
randomly sampled 250 participants from Enroll-HD for each condition and used their baseline characteristics to simulate the predicted changes in the clinical
score. We performed 1,000 random samplings. The solid line represents the averagewhile the shaded area depicts the 95%CI prediction. For the segregation
of the plots into 2 groups, we chose values of CAP, PIN, and age that are close to themedian of the Enroll-HD population (493 for CAP, 3.07 for PIN, and 51 for
age). CAP = CAG-age-product; PIN = normalized prognostic index; SDMT = Symbol Digit Modalities Test; SWR = Stroop Word Reading; TFC = Total Functional
Capacity; TMS = Total Motor Score.
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Intriguingly, we identified differences in the placebo response
between motor and cognitive scores. For the Total Motor
Score (TMS), the improvement lasts up to the end of the
dosing regimen of the trial. After the dosing regimen ends at
week 69 for most participants, the values of TMS align with
the expected natural history progression (Figure 4B). How-
ever, this was not the case for the cognitive measurements,
where we observed the persistence of this initial improvement
after dosing was stopped (Figure 4, C and D). The placebo
response observed in motor and cognitive scores affect the
cUHDRS score because it is derived from a linear combina-
tion of TFC, TMS, SDMT score, and SWR score (Figure 4E).

It is important to note that the minimal dropout rate of ap-
proximately 3% observed at early assessments (weeks 5 and
21) suggests that the initial improvement after baseline is not
influenced by dropout effects. This low dropout rate allows
for a robust estimation of the parameters associated with the
placebo response, which is modeled as an initial improvement
after baseline and, therefore, mostly dependent on the dif-
ferences between baseline and initial follow-up visits. Con-
sequently, our placebo response model effectively captured
the changes in clinical scores within the GENERATIONHD1
placebo cohort during the trial’s dosing period (up to week
69) (eFigure 2). Although dropout rates increased to ap-
proximately 10% at week 69 and 23% by week 101, there were
no significant differences in baseline characteristics between
participants who dropped out and those who completed the
trial at week 101 (eFigure 3). However, dropouts progressed
faster according to some end points (eFigure 4), which could
influence later observations and potentially explain the
slightly slower progression observed in some end points,
particularly in the cUHDRS score (Figure 4E).

Simulation of Placebo Arms for Patient
Populations With Different Inclusion Criteria
Once natural history progression, placebo response, and
baseline characteristics predictive of progression rate are
quantified, it is possible to simulate the changes in each
clinical score for different patient populations characterized
by different baseline characteristics. In Figure 5, we present
the expected changes in each clinical measurement for com-
monly used selection criteria in HD: CAG-age product
(CAP), normalized prognostic index (PIN), age, and HD-ISS
(different subpopulations given in eFigures 5–8).

We observed variations in the progression of different sub-
populations depending on the specific clinical measurement
used. For instance, PIN and CAP can effectively enrich the
population with patients more likely to progress, particularly
when using TFC (Figure 5, A and B). Moreover, when using
TFC as an end point, the progression rate in individuals with
HD-ISS = 2 is not expected to be different from the rate in
those with HD-ISS = 3, in contrast to other clinical meas-
urements such as SMDT (Figure 5C). Finally, no relevant
difference is observed when selecting by age (Figure 5D).
These results highlight the importance for careful selection of

appropriate clinical end points and consideration of specific
subpopulations when designing and analyzing clinical trials
for HD.

Discussion
In this study, we aimed to understand and quantify disease
progression and placebo response in the UHDRS clinical
measurements used to assess functional (TFC), motor
(TMS), and cognitive (SDMT, SWR) progression in HD.We
used large natural history cohort data from Enroll-HD to
model the natural history progression of these clinical scores.
We developed a method to estimate disease trajectory for
each clinical score and found that TFC and TMS were best
characterized by logistic-like trajectories, consistent with
previous analysis,13 while cognitive scores (SDMT, SWR)
exhibited exponential-like trajectories.

We further investigated whether baseline characteristics that
can be easily assessed in a clinical visit could serve as pre-
dictors of the progression rates of each clinical score. Our
findings indicate that baseline characteristics such the stage of
the disease (baseline levels of clinical scores), CAG, CAP, and
use of tetrabenazine and antipsychotics act as robust pre-
dictors of progression rate for each clinical score. It is im-
portant to highlight that our framework does not establish
causality between these characteristics and disease pro-
gression. For instance, we cannot determine whether co-
medication use causes faster progression or whether those
with faster progression are more likely to use these medi-
cations. In addition, when comparing the progression rates
among different scores over 1 year, we observed a weak cor-
relation among them, indicating that patients who are likely to
experience progression in one clinical score may not neces-
sarily exhibit the same progression in another score in the
short term.

Furthermore, we sought to understand the nature and mag-
nitude of placebo response by analyzing data from the
GENERATION HD1 placebo arm. Our analysis revealed
minimal placebo response in the functional score (TFC). By
contrast, we observed a strong placebo response in motor and
cognitive scores, showing a strong improvement after baseline
that persisted until at least week 69 when the dosing regimen
of the trial stopped for most participants. For the motor score
(TMS), after week 69, this improvement diminished, and
TMS levels aligned with the expected levels from natural
history. This pattern suggests the presence of a long-term
placebo effect in the motor score. Indications of placebo
effects in TMS have been previously observed in other HD
trials,29-31 and placebo effects in motor scores have been
documented in Parkinson disease.32-35 Of interest, the cog-
nitive scores (SDMT, SWR) exhibited an even stronger pla-
cebo response that was sustained after the dosing period of
the trial ended. There are several potential causes for the
observed strong improvement in the cognitive scores, such as
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placebo effect, practice effect, or improvements in mood due
to trial participation. Although we cannot exclude any of these
possibilities, the observation that this improvement remains at
weeks 85 and 101 (after the end of the dosing regimen)
suggests that this may be related to a learning or practice effect.
This effect is likely influenced by the more frequent assess-
ments in the GENERATION HD1 trial compared with the
annual assessments in the Enroll-HD cohort. This is consistent
with previous studies showing that the frequency of assessment
of cognitive scores lead to improvements related to practice
effect in UHDRS cognitive scores,36,37 but also in cognitive
measurements in Alzheimer and multiple sclerosis.38-40 It is
important to note that these effects also significantly influence
the cUHDRS score, given that it is derived from a linear re-
lationship between TFC, TMS, SDMT score, and SWR score.2

Taken together, these findings have significant implications
for trial design in HD. The strong predictive value of baseline
characteristics for progression rate allows for the selection of
patients based on their expected rate of progression, enabling,
for example, trial enrichment with patients more likely to
progress over the period of the trial. However, the weak
correlation in progression rates between different clinical
scores indicates that patients likely to progress based on one
scoremay not necessarily progress based on other scores. This
is because the clinical scores change in a nonlinear manner,
that is, with different speeds at different moments of the
disease. Therefore, depending on where patients are in the
course of the disease, they are more likely to progress
according to one end point but not another. This highlights
the importance of carefully selecting end points when
enriching trials with specific patient populations. Further-
more, the observed differences in the nature andmagnitude of
the placebo response highlight the need for a better un-
derstanding of their underlying effects. Moreover, previous
research has shown that a composite measure of functional,
motor, and cognitive scores (cUHDRS) provides an im-
proved measure of clinical progression and enhances clinical
trial design by requiring smaller sample sizes.2 The use of this
composite score is becoming common practice; however,
because these analyses were evaluated in the absence of trial
data, future work should evaluate whether these conclusions
hold in the presence of placebo response.

It is important to note that our analysis revealed that a placebo
response initially leads to an improvement after baseline, but
after accounting for this initial improvement, the rate of
progression between the GENERATION HD1 placebo arm
and Enroll-HD cohorts remained consistent. This highlights
the value of Enroll-HD as a retrospective source of natural
history information. However, our analysis also emphasizes
the potential for misleading interpretations when comparing
trial data with retrospective natural history studies, particu-
larly in distinguishing placebo response from drug effect.

Our mathematical framework represents an initial step toward
quantifying changes in clinical end points within a clinical trial

setting. By incorporating both natural history progression
inferred from Enroll-HD and placebo response inferred from
GENERATIONHD1, our model effectively captures changes
in clinical end points for different patient populations and can
be used to optimize the design and analysis of clinical trials in
HD. Moreover, our model can serve as the first step toward
having a modeling tool for simulating virtual placebo arms,
which can optimize trials by reducing the number of required
patients and accelerating clinical research.

It is important to acknowledge the main limitation of the
current model, which lies in its reliance on a limited amount of
trial data (260 participants fromGENERATION-HD1placebo
arm). Therefore, the observed placebo response in GENER-
ATION-HD1may not necessarily be generalized to other trials
with different patient populations, treatment interventions, and
trial designs. Moreover, while Enroll-HD includes participants
from various stages of the disease, it is worth noting that certain
stages, such as early stages, may be less represented. If future
trials focus on these specific populations, it may be necessary to
adapt the model accordingly to ensure its applicability.

In summary, our findings bring a new understanding of dis-
ease progression and placebo response in HD and our theo-
retical framework has the potential to enhance the efficiency
of clinical trials and accelerate the development of effective
treatments for patients with HD.
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