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a b s t r a c t 

When an existing coating over a painting is detrimental to its reading and full appreciation, it needs to 

be removed. Coating removal to reveal the underlying painting, with minimal physical intervention, may 

provide additional information regarding the painting and guidance for its restoration or intervention. 

A Neural Network (NN) was devised to simulate the removal of a painting’s coating, using as training 

data a small area of the painting where the coating had been physically removed. Simulations of coating 

removal using the NN and two additional methodologies were compared to actual physical removal. 

Hyperspectral images of the paintings with and without coating were acquired, and chromatic variations 

were computed by estimating differences in just-noticeable different colors (JND) values and in the color 

gamut, using CIECAM16-UCS. Comparisons were made between paintings with and without coating, and 

between paintings without coating and their simulations. 

Results showed that removing the coating led to an increase in JND values (1.8 times on average) and 

in the color gamut, but the magnitude was dependent on the initial condition of the coating. When 

simulating coating removal, the NN produced the best chromatic simulation, with an average JND of 

approximately 2.6 ± 0.5 (1.1 ± 0.2 excluding lightness), while other methodologies produced differences 

of approximately 8.6 ± 5.7 (3.7 ± 3.0 excluding lightness). 

Results achieved with the NN highlight its capability for simulating coating removal with minimal phys- 

ical intervention to the painting, a valuable tool when complete coating removal without outcome pre- 

diction would be undesirable. 

© 2025 The Author(s). Published by Elsevier Masson SAS. This is an open access article under the CC 

BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The protective varnish layer (coating) applied to paintings 

erves two main purposes: to protect the painting’s surface from 

xternal agents, e.g. water and dust, and to enhance its appear- 

nce by increasing its color saturation and contrast [ 1–4 ]. The 

erceptual improvement is due to the interaction of light with 

he painting’s surface, particularly the multiple reflections at the 

ir/varnish/paint interfaces [ 3 , 5 , 6 ], the molecular weight of the

oating and the texture of the painting surface (binder and pig- 
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ent) [ 7 ]. Over time, the coating deteriorates, becoming yellowish 

nd darker, losing gloss and elasticity, and developing cracks, im- 

osing transmittance and structural changes on the painting [ 5 , 8–

0 ]. These changes to the coating are caused by an oxidation pro- 

ess driven by external agents present in the environment, such as 

atural and artificial light and humidity. This aging process impacts 

he visual reading of the painting, by changing the transmittance of 

he interfaces [ 5 , 11 ], a change that may not be uniform across the

ainting’s surface. 

The physical removal of an aging coating will expose the col- 

rs underneath and improve the reading of the painting, a task 

hat falls under the regular work of a painting conservator. Nev- 

rtheless, previewing the color changes before the actual interven- 

ion would provide valuable information to the painting conserva- 

or and the owner, as the result may differ greatly from the exist- 

ng reading of the painting [ 12 ]. 
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Previous works simulated the removal of the coating to sup- 

ort the restoration process [ 5 , 9 , 11 , 13–15 ], by collecting the spec-

ral properties of the painting and the coating through localized 

easurements of the coating’s transmittance using low or point- 

ased spatial resolution instruments, such as direct spectropho- 

ometers [ 16 ]. Localized measurements of the painting’s spectral 

roperties require extrapolating the locally obtained information to 

he entire painting, disregarding spatial variations in the oxidation 

rocess or the uniformity of the coating [ 17 ]. Other works used 

ultispectral imaging systems capable of imaging the whole paint- 

ng, but with low spectral resolutions [ 8 , 14 , 18 ]. Chemical analy-

es may also be used to estimate the composition of the coat- 

ng and directly measure, or infer, its transmittance, but implying 

etrieving a localized physical sample of the coating from a hid- 

en area of the painting and extrapolating it globally, again disre- 

arding the coating’s spatial variations [ 19 , 20 ]. Such a methodol- 

gy has the advantage of keeping the visible portion of the paint- 

ng intact but will require a physical sample and direct interven- 

ion on the painting. Theoretical approaches, as the Kubelka-Munk 

wo-constant theory, have attempted to model the optical proper- 

ies of the coating with minimal to no physical interaction with 

he painting. This mathematical model accurately describes the in- 

eractions between light and transparent or translucent materials, 

articularly the internal reflections at the coating level in paint- 

ngs. It establishes a relationship between the reflectance of the 

ainting with and without varnish, assuming that only light that 

ropagates perpendicular to the surface of the coating is consid- 

red, and assuming absorption and scattering in both the incidence 

nd reflected directions of the light [ 3 , 5 , 6 , 15 , 21–24 ]. Developing

eural networks (NN) to simulate the removal of the coating re- 

uires images of paintings with and without the coating (localized 

r across the whole painting, making obsolete the simulation pro- 

ess if the whole painting is considered) to be used as reference 

mages to train the NN. Sequential NN are commonly employed 

o learn patterns or tasks from databases, and generate predic- 

ions [ 25 ], consisting of sequential layers characterized by several 

odes and activation functions. Activation function evaluates the 

nput at each node and weights it to produce a prediction as close 

s possible to the expected result defined during the training pro- 

ess [ 26 ], achieved by adjusting the NN weights of each node iter- 

tively, over a specific number of cycles (or epochs) [ 27 ]. Addition- 

lly, the NN may use optimizer functions to accelerate the train- 

ng process, attempting to minimize the error between the predic- 

ion and the result [ 28 ]. Convolutional NN (CNNs) represent an- 

ther class of NN that use images as input, characterized by con- 

olutional and max-pooling layers to reduce the dimensionality of 

he input image, followed by a structure similar to a sequential NN 

 29–34 ]. However, it is important to note that reducing the image 

imensionality leads to an inevitable loss of the image’s original 

nformation. 

Predicting a painting’s appearance beneath its surface coating 

an assist conservation planning. Such predictions inform treat- 

ent strategies and facilitate clear communication with clients by 

llowing them to visualize possible outcomes before any interven- 

ion. Additionally, predictive digital simulation of varnish removal 

rovides a valuable alternative when physical cleaning is not possi- 

le. This may be due to the instability of paint layers, the presence 

f sensitive materials, solubility issues, or ethical considerations 

elated to preserving historic coatings. In these situations, non- 

nvasive visualization techniques offer a practical means for doc- 

mentation and interpretation, supporting decision-making while 

inimizing risks to the artwork. 

While these predictive tools can help the painting conserva- 

or, it is important to recognize the inherent complexities and un- 

ertainties of varnish removal. Removing or replacing a painting’s 

oating is a complex process, with results that are difficult to an- 
323
icipate. An experienced painting conservator may attempt to esti- 

ate the outcome obtaining known information about the paint- 

ng, such as the artist, creation period, pigments and binders used, 

r the type of coating. Although examining localized regions where 

he original paint is exposed can offer valuable reference points, 

uch evidence is often fragmentary and may not provide a compre- 

ensive basis for reconstructing the painting’s authentic chromatic 

cheme. The accuracy of any simulation predicting the effects of 

emoving a painting’s coating is limited by several unknown fac- 

ors including the coating’s composition, thickness, distribution, 

nd degradation state. Furthermore, over time, a painting’s pig- 

ents and/or binder may degrade due to chemical reactions, light 

xposure, pollutants, microorganisms, or physical damage, result- 

ng in different hues or, occasionally, the formation of new pig- 

ents. As such, knowing the coating’s composition is insufficient 

o estimate the painting’s underlying colors. The degree of yellow- 

ng and other optical changes can vary significantly depending on 

actors as the coating’s thickness, application method, environmen- 

al exposure, and degradation state, even when the same material 

s used. 

These unknows limit the predictions of computational models 

ased on coating transmittance but drive the development of more 

omputational models capable of providing visual simulations of 

he painting’s post-intervention appearance [ 5 , 7 , 8 , 15 , 35–37 ]. 

This work presents and assesses three methodologies capable 

f simulating the removal of a painting’s coating to reveal the un- 

erlying colors and spectral data, resorting to hyperspectral images 

f paintings acquired before and after the physical removal of the 

oating [ 14 , 18 , 36 , 38–44 ]. The methodologies were assessed by col-

rimetrically comparing the colors obtained with the virtual and 

ith the real removal of the painting’s coating. 

. Research aim 

The purpose of this study was to evaluate three methodolo- 

ies for the virtual removal of a painting’s coating, with the aim 

f identifying the most effective approach by analyzing the chro- 

atic changes between the virtual and the actual removal. 

. Material and methods 

.1. Paintings 

Fig. 1 represents a painting used in this study, before and af- 

er the physical removal of the coating, structural intervention, 

nd restoration for preservation and consolidation of the painting. 

amed “Nuno Álvares em Valverde ”, from the year 1904, with a size 

f 46 (H) x 55(V) cm. Table 1 and Fig. 1 in the Supplementary Ma-

erials shows the data for all the paintings used. 

.2. The external layer: the coating 

The external layer of the paintings was not a uniform, homoge- 

eous coating. Instead, the surfaces displayed irregular applications 

f coating, intermixed with non-uniform accumulations of dirt and 

ust, and, in some areas, complete absence of coating. These vari- 

tions resulted in regions with differing coating thicknesses, local- 

zed dirt and dust deposits, and uncoated sections covered solely 

y particulate matter. The coating removal showed an underly- 

ng dirt layer, indicating that the paintings were exposed to envi- 

onmental conditions before coating application and without prior 

urface cleaning. 

As the outermost layer, the coating was exposed to various 

eteriorating agents including dirt, fluctuating ambient conditions, 

ltraviolet radiation, and inappropriate relative humidity and 

emperature conditions [ 45 ]. Prolonged exposure to these factors 
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Fig. 1. Painting 1 (Nuno Álvares em Valverde) before (a) and after (b) removing the coating and structural.intervention. 
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ypically causes increased rigidity and yellowing of the coating [ 1–

 , 11 ]. The paintings analyzed in this study exhibited coatings with 

 wide range of degradation and coverage, from entirely absent 

o highly irregular. Areas with thicker coating appeared darker or 

ore yellowed compared to other portions of the painting, which 

ompromised the readability of the pictorial composition when 

sing HIS [ 13 ]. 

.3. Cleaning 

As there was no information about the type, concentration, or 

omposition of the varnishes used, the paintings’ protection and 

ntegrity during cleaning was ensured by removing the aged var- 

ish starting with low polarity solutions. The most effective mix- 

ure in removing the coating provided clues about the composi- 

ion of the coating and possible identification of its type, proba- 

ly a resin of natural origin. A similar process was employed in 

ll paintings until an appropriate solvent was identified as effec- 

ive on removing the coating, as there were no guarantees that all 

aintings had the same coating. Further discussion of this process 

an be found elsewhere [ 17 ]. 

The removal of the coating uncovered a secondary layer of dirt 

ndicating that the paintings were exposed to the environment be- 

ore being varnished, with the coating subsequently applied over 

he dirt layer without prior cleaning. The records about each paint- 

ng did not mention the period during which the paintings were 

eft unvarnished, leaving it unknown. 

After assessing and analyzing the layer of dirt, it was removed 

ith a solution of demineralized water and 1 % polyethoxylated 

auryl alcohol, Brij® 35, a nonionic surfactant with a neutral pH 

 46 ]. Only after the removal of the varnish and the dirt layers, the

ainting was considered ready for imaging. Further details about 

he complex cleaning methodology used to ensure extensive coat- 

ng cleaning may be found in the Supplementary Materials section. 

.4. Hyperspectral images acquisition and processing 

Paintings were imaged by a HIS, before and after the re- 

oval of the coating and painting cleaning as described else- 

here [ 17 , 18 , 41 , 42 , 47 , 48 ]. The HIS used was composed of a low-

oise Peltier-cooled digital camera with 1344 ×1024 pixels and a 

2-bit digital signal output (Hamamatsu, C4742–80–12AG, Hama- 

atsu Photonics K.K., Hamamatsu City, Japan) coupled to a fast- 

unable liquid-crystal filter (VariSpec, model VS-VIS2–10HC-35-SQ, 

ambridge Research & Instrumentation, Inc., MA), mounted in front 

f a zoom lens working at 75 mm, adjusted to f/11, and con- 

rolled by a MatLab in-house developed software (MatLab R2022b, 
324
athWorks, Natick, MA, USA). An infrared filter was positioned in 

ront of the HIS to prevent contamination from out-of-band trans- 

issions of high wavelengths, when tuned to lower wavelengths. 

he spectral radiance from 400 to 720 nm in 10 nm increments 

as collected using as light source a discharge lamp (OSRAM HQI 

50 W RX7s) with a maximum illuminance of 20 0 0 lx across all ar-

as of the painting to preserve its integrity. Non-uniformities in the 

llumination field were compensated by imaging a uniform flat sur- 

ace. The spectral reflectance was estimated from the data acquired 

onsidering a surface with known reflectance (Munsell N7, VeriV- 

de Limited, Leicester United Kingdom), imaged with the painting 

 18 , 39 , 49–51 ]. 

The HIS image acquisition of the same painting at different 

imes returned images with different sizes and subtle spatial dif- 

erences because of sequential acquisitions (changes in lighting, 

amera, and painting position, although minimized) and chromatic 

berrations of the system, respectively. To correct for such differ- 

nces, two image registration procedures were used: one regis- 

ering the images across wavelengths [ 51 ] using as reference the 

mage at 550 nm for its best signal-to-noise ratio, and the other 

egistering across the spatial distortions using the MatLab function 

mregtform [ 52 ], resulting in images with comparable pixel infor- 

ation. 

.5. Virtual coating removal 

Three virtual coating removal methodologies based on hyper- 

pectral images of paintings were implemented, tested, and com- 

ared to identify the most effective method for simulating coating 

emoval on the hyperspectral domain. 

.5.1. Coating removal method 1: average protective layer 

The removal of the coating was simulated by assuming Eq. (1) ., 

here the R P COATING 
(λ) , and the R P n COATING 

(λ) represent the re- 

ectance of the painting with and without the coating respectively, 

hile α( λ) , represents the effect of the coating. Some of the paint- 

ngs used had undergone reintegration processes, including areas 

hat were repainted, physically reconstructed, or rebuilt. This study 

id not consider such areas. 

 P COATING 

(
λ
)

= α
(
λ
)

× R P n COATING 

(
λ
)

(1) 

Estimating α( λ) pixelwise for each painting’s individual area 

ould compensate for the coating’s non-uniformities. However, 

ulfilling such a requirement would imply knowing the reflectance 

pectra of the entire painting without the coating, eliminating the 

eed for digital simulation. α( λ) was estimated over a limited sec- 

ion of the painting only and assumed to be representative of the 
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Fig. 2. The W30 area used in the computations, delimited by the red lines, on a 

sRGB rendering of Painting 1 with the original coating, considering the D65 stan- 

dard illuminant. 
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Fig. 3. Grayscale image of Painting 1 without the coating, with the 50 brightest 

(yellow dots) and darkest (red dots) pixels highlighted (yellow and red inset squares 

zooms in the selected pixels for better visualization). 
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ntire coating. A 30-pixel width area (W30) along the periphery 

f the paintings was used, as represented between the red lines 

n Fig. 2 . The W30 area represents approximately 2 cm measured 

rom the edge of the painting to the red line, an area usually hid-

en by the painting’s frame. The rationale behind this approach 

as that removing the coating from a hidden area would require 

inimal visible intervention from the conservator and would not 

ompromise the painting’s integrity or appearance if the restora- 

ion were not to be completed. 

Removing the coating from a surrounding area of the painting, 

ather than just a localized section, enabled better characterization 

f the coating’s non-uniformities or spatial variations while pro- 

iding access to a broader gamut of colors for analysis. 

α( λ) was estimated by using Eq. (2) for each pixel over the W30

rea of the hyperspectral image with pixel coordinates (x,y) , then 

veraged across pixels ( ̄α(λ) W 30 ) and assumed to be representa- 

ive of all α( λ) values. The virtual simulation of the hyperspectral 

mage of the painting without coating, RPS1 (x , y ) (λ) was then simu- 

ated by using Eq. (3) . 

(
λ
)
( x,y ) 

=
R P COATING ( x,y ) 

(
λ
)

R P n COATING ( x,y ) 

(
λ
) (2) 

PS1 ( x, y) 

(
λ
)

=
RPCOAT ING ( x , y) 

(
λ
)

α
(
λ
)

W 30 

(3) 

.5.2. Coating removal method 2: Kubelka-Munk two-constant theory 

The Kubelka-Munk two-constant theory described elsewhere 

 1 , 5 , 6 , 21–23 , 53 ] was used assuming the RPnCOATING (x , y ) (λ) , com-

uted using Eq. (4) , the body reflection of the coating ( Rb 
V 
(λ) ), the

eflectance of the painting substrate ( Rb 
P 
(λ) ), and the transmittance 

f the coating ( T (λ) ) estimated using Eq. (5) [ 5 , 23 ]. 

The virtual simulation of a hyperspectral image of the 

ainting without coating, R P S2 (x,y ) (λ) ∼= 

R P n COATING (x,y ) (λ) ( Eq. (6) ), 

as obtained by using Eq. (7) , assuming the reflectance se- 

ected from bright and dark areas of the painting with the 

oating ( Rwhite 
P COATING 

(λ) and Rblack 
P COATING 

(λ) ) and without the coating 

 Rwhite 
P n COATING 

(λ)and Rblack 
P n COATING 

(λ) ), a uniformly varnished surface, and 

xcluding the specular component by including the Saunderson’s 
325
orrection [ 22 , 53–55 ]. 

 P COATING ( x,y ) 

(
λ
)

= Rb 
V 

(
λ
)

+
T 2 

(
λ
)

. Rb 
P 

(
λ
)

1 − Rb 
V 

(
λ
)

. Rb 
P 

(
λ
) (4) 

(
λ
)

= 

[ 

Rwhite 
P COATING 

(
λ
)

− Rblack 
P COATING 

(
λ
)

Rwhite 
P n COATING 

(
λ
)

− Rblack 
P n COATING 

(
λ
) − Rblack 

P COATING 

(
λ
)
. 

(
Rwhite 

P COATING 

(
λ
)

− Rblack 
P COATING 

(
λ
)) ] 

1 
2 (5) 

 P n COATING ( x,y ) 

(
λ
)

= Ri 
P 

(
λ
)

+ Rb 
P 

(
λ
)

(6) 

PS2 ( x , y) 

(
λ
) ∼= 

RPnCOAT ING ( x , y) 

(
λ
)

= RPCOAT ING ( x , y) ( λ) −Rblack 
PCOAT ING 

( λ) 

T( λ) 
2 + Rblack 

PCOAT ING 
( λ) .

(
RPCOAT ING ( x , y) ( λ) −Rblack 

PCOAT ING 
( λ) 

) + Rblack 
PnCOAT ING 

(
λ
) (7) 

The parameters Rb 
V 
(λ) , Ri 

P 
(λ) , and T (λ) were estimated using 

he reflectance selected from bright and dark areas of the paint- 

ng with the coating ( Rwhite 
P COATING 

(λ) and Rblack 
P COATING 

(λ) ) and without 

he coating ( Rwhite 
P n COATING 

(λ)and Rblack 
P n COATING 

(λ) ). To avoid the oversim- 

lification of selecting a single bright or dark pixel possibly as- 

ociated with a highlight, hot pixel, dead pixel or a noise highly 

ontaminated pixel, the average reflectance of the 50 brightest and 

arkest independent pixels was estimated and used as the bright 

nd dark reflectance, respectively. These pixels were selected from 

 grayscale image rendered from the painting’s hyperspectral im- 

ge without the coating, to reduce its possible influence, and spa- 

ial coordinates recorded. Fig. 3 represents the grayscale image ren- 

ered from the hyperspectral image of Painting 1 without the coat- 

ng, with the 50 brightest (yellow dots) and darkest (red dots) pix- 

ls highlighted [ 23 ]. 

Assuming that the substrate, corresponding to the selected 

lack area, absorbs all the incident light, Rb 
V 
(λ) was assumed to 

e equal to Rblack 
P COATING 

(λ) , and Ri 
P 
(λ) equal to Rblack 

P n COATING 
(λ) . 

Eq. (8) represents Saunderson’s correction applied to all re- 

ectance data to remove the reflection and scattering components 

t the air-painting interface caused by the illumination/acquisition 

eometry. In Eq. (8) , i 0 = 0 . 04 and i 2 = 0 . 6 were based on the 

resnel coefficients, assuming a varnish with a refractive index of 
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Fig. 4. NN framework devised to virtually remove a painting’s coating. a) shows a 

rendering of the reflectance data used as input to train the NN, corresponding to 

the W30 area of pixels of the painting (as in Figure 2) with (a1)) and without (a2)) 

the coating, b) outlines the basic structure of the two layer NN, and c) an image 

rendered from the reflectance data of a painting with the coating used as input to 

simulate the virtual removal of the coating. The output was a hyperspectral image 

of the painting with the reflectance spectra without the influence of the coating - 

RPS3 (x , y) (λ) . 
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.5, and an illumination/acquisition geometry relative to the paint- 

ng of 45 °/0 ° R m 

(λ) represents the reflectance with the Saunder- 

on’s corrections, and R t (λ) represents the reflectance from the 

aintings’ hyperspectral images [ 22 , 53–55 ]. 

 m 

(
λ
)

=
(1−i 0 ) .

(
1 − i2 

)
.Rt 

(
λ
)

1 − i 2 .R t 

(
λ
) (8) 

.5.3. Coating removal method 3: neural network (NN) 

Fig. 4 outlines the third methodology: a sequential NN that gen- 

rates a hyperspectral image of a painting without its coating, us- 

ng as input hyperspectral image of the paintings with the coating. 

Consistent with the rationale presented in method 1, the stripe 

f pixels that surrounded the image of the painting (W30) was 

sed in method 3. Fig. 4 a1) and a2) represent the pixels of the

mage from which the reflectance data used to train the NN ( Fig. 4

) ) was retrieved, with and without the coating, respectively. Af- 

er training the NN, the hyperspectral image of the painting with 

he coating was used as input to the NN ( Fig. 4 c) ), resulting in

n output of the hyperspectral image of the painting without the 

oating. 

Fig. 4 b), represents the devised sequential NN composed by 2 

idden layers, each with 33 nodes using the hyperbolic tangent 

ctivation function ( Tanh ), trained to virtually remove the coat- 

ng using the inputs provided over 50 complete epochs, assuming 

he Nesterov Accelerated Adaptive Moment ( nadam ) optimizer. The 

oss function ’ mean squared error ’ was used to assess the perfor- 

ance of the NN. 

The Tanh function provides a better adjustment when consider- 

ng models that need to predict the output based on the probabil- 

ty of existence, and the nadam optimizer, which combines the ad- 

antages of the RMSprop, the SGD Moment, and the Nesterov Ac- 

elerated Gradient, was used to enhance the efficiency and speed 

f the NN training. 

.6. Simulating the colors of the images from the hyperspectral image 

ata 

Reflectance data from the hyperspectral images was converted 

nto tristimulus values (XYZ) assuming the CIE D65 standard illu- 

inant, and the CIE 2006 LMS cone fundamentals for 10 ° color- 

atching functions. Color images were rendered from the XYZ val- 

es assuming the sRGB color space [ 42 , 43 , 50 , 56 , 57 ]. 

Colorimetric analyses were performed in CIECAM16-UCS, a per- 

eptual color space [ 58 ], allowing the representation of the per- 

eived amounts of green or red, blue or yellow, and lightness 

f a color by using the coordinates a’, b’ and J′ , respectively. 

onversions assumed the luminance of the adapting field ( L ) of 
A 

326
0 cd/m2 , the background luminance ( Yb ) of 50 cd/m2 , the sur- 

ound condition set for “average”, and the CIE D65 illuminant as 

he reference white [ 58–60 ]. 

Fig. 5 shows the color volume of the CIECAM16-UCS coordinates 

stimated from the reflectance data of Painting 1 without the coat- 

ng. Each coordinate represents a pixel in the painting’s image, rep- 

esenting the color perceived by a CIE 2006 observer when viewing 

ainting 1 under CIE D65 illumination. All chromaticity coordinates 

epresented in the color volume constitute the color gamut, while 

he shaded area at the bottom of the figure represents the projec- 

ion of the color volume in the CIECAM16-UCS ( a’,b’ ) chromaticity 

iagram. 

.7. Metrics for evaluating chromatic diversity 

Chromatic changes between paintings with and without coat- 

ng, and paintings without coating and the virtual simulation 

 R P S1 (x,y ) (λ) , RPS2 (x, y) (λ) , and RPS3 (x , y ) (λ) ), were estimated by 

omparing the number of just-noticeable different colors (JND) and 

he chromatic differences. 

The JND was assumed to represent the chromatic diversity per- 

eived by an observer when viewing a painting. It was estimated 

y segmenting the CIECAM16-UCS into cubes of 0.5 units and as- 

uming that all chromaticity coordinates within the same cube 

ere not discernible and counted as one color [ 61–63 ]. The JND 

as estimated by counting the number of non-empty cubes. An 

ncrease in the JND was considered to be an increase in the chro- 

atic content of the painting [ 61 , 63 , 64 ], and vice-versa. 

Variations in JND between paintings in two conditions were es- 

imated by computing the ratio between them Pa :Pb , by Eq. (9) , 

here JNDPa and JNDPb represent the JND of the painting after ( Pa ) 

nd before ( Pb ) the removal of the coating, respectively: 

a : Pb =
JNDPa 

JNDPb 

(9) 

The chromatic differences between the paintings’ color volumes 

efore and after the removal of the coating were estimated by 

omputing the color difference between corresponding pixels us- 

ng the color difference - �E′ - as in Eq. (10) [ 58 ]. 

E ′ =
√ 

(
J′ 
b − J′ 

a 

)2 + (
a′ 

b − a′ 
a 

)2 + (
b′ 

b − b′ 
a 

)2 
(10) 

Where J′ , a’, and b’ represent the CIECAM16-UCS chromaticity 

oordinates from the color volume of the painting, before ( b ) and 



J.A.R. Monteiro, L. Cardeira, A. Bailão et al. Journal of Cultural Heritage 74 (2025) 322–331

Fig. 6. CIECAM16-UCS color gamut for Painting 1 before (left column) and after (right column) the removal of the coating. Each coordinate within the color volume represents 

the color of a pixel from the image of the painting, retrieved from the hyperspectral image data. Shaded areas at the bottom of the diagram represent the color gamut 

projection in the CIECAM16-UCS (a’,b’) chromaticity diagram. 

Table 1 

Variation of the JND ( Pa : Pb ) and the average chromatic difference for each painting, as estimated by the ratio represented in Eq. (9) and Eq. (10) . Pa : Pb values higher than 1 

represent an increase, while lower than 1 represent a decrease from before to after the removal of the painting’s coating. Values in brackets represent the standard deviation 

associated with the average estimated across paintings. 

JND ( Pa : Pb ) �E′ �E′ (a’,b’) 

CIECAM16-UCS CIECAM16- UCS ( a’,b’ ) Average ( ±STD) Average ( ±STD) 

Painting 1 3,4 2,4 10,4 ( ±4,4) 2,5 ( ±2,1) 

Painting 2 1,9 1,7 3,7 ( ±2,2) 1,6 ( ±0,9) 

Painting 3 1,7 1,6 3,7 ( ±2,3) 1,2 ( ±0,8) 

Painting 4 1.4 1.1 3,0 ( ±2,0) 1,0 ( ±0,6) 

Painting 5 0,8 1,0 5,6 ( ±3,9) 2,0 ( ±1,3) 

Average 1,8 ( ±0,9) 1,6 ( ±0,5) 5,3 ( ±2,7) 1,7 ( ±0,5) 
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fter ( a ) the removal of the coating. The overall chromatic differ- 

nce was estimated by averaging the �E′ across all pixels. 

Estimating changes in the paintings’ chromatic diversity upon 

oating removal will provide information regarding the coating’s 

nfluence on the visual interpretation of the painting, particularly 

hether the coating impairs or enhances color perception. This 

nalysis will establish the expected results for simulation method- 

logies. 

. Results 

Results for all paintings are provided in the Supplementary Ma- 

erial. 

Fig. 6 , represents the CIECAM16-UCS of Painting 1 before (left) 

nd after (right) the physical removal of the coating. Each coordi- 

ate within the color volume represents the color of a pixel com- 

uted from the painting’s hyperspectral image. An increase in color 

olume after the coating removal implies an impairing effect of the 

oating on the visual interpretation of the painting with the coat- 

ng, as the coating reduces the chromatic diversity available to the 

bserver. 

Table 1 represents the variations in the JND and the average 

hromatic difference between the painting before and after remov- 

ng the coating ( Pa :Pb ), as estimated by Eq. (9) and Eq. (10) , respec-

ively. All paintings had a ratio Pa :Pb higher than 1 (an increase in 

he JND), except for Painting 5 if the J′ dimension was ignored. 

The average chromatic difference ( �E′ ) across all paintings, 

hen considering a’, b’ and J′ , was found to be approximately three 

imes greater than when estimating the same quantity ignoring J′ . 
Fig. 7 represents for Painting 1 the resulting color gamut 

f the virtual removal of the coating across the three meth- 

ds. RPS1 (x , y ) (λ) represents the color gamut (red dots) resulting 

rom the simulation using the average coating of the W30 area, 
327
 P S2 (x,y ) (λ) represents the color gamut (green dots) from the sim- 

lation using the Kubelka-Munk theory, R P S3 (x,y ) (λ) represents the 

olor gamut (yellow dots) from the simulation using the NN. 

The RPS3 (x , y ) (λ) produced a color gamut that better resembled 

he color gamut of Painting 1 without the coating, represented in 

ig. 5 while RPS2 (x , y ) (λ) showed the higher difference. 

Table 2 shows the variation in the JND as the ratio between the 

ND found for the painting virtually simulated without and physi- 

ally without the coating, Psimulated : Poriginal , in CIECAM16-UCS. 

Ratios greater than 1 show an increase in the JND in the simu- 

ated image of the painting, while < 1 show a decrease. On average, 

ariations were higher in RPS2 (x , y ) (λ) , whereas variations resulting 

rom the simulations for RPS1 (x , y ) (λ) and R P S3 (x,y ) (λ) were closer 

o the real painting. 

Table 3 represents the average color difference between the 

riginal painting without the coating and the simulations of the 

irtual removal of the coating in CIECAM16-UCS. The highest color 

ifference averaged across analyzed paintings was found when us- 

ng the Kubelka-Munk theory while the simulation using the NN 

chieved the lowest average color difference. 

Fig. 8 shows sRGB renderings of the reflectance data retrieved 

rom the original Painting 1 without the coating ( R P nCOATING 
(λ) ) 

nd the three simulations of the removal of the coating 

 RPS1 (x , y ) (λ) , RPS2 (x , y) (λ) , and R P S3 (x,y ) (λ) ). 

. Discussion 

The removal of a painting’s coating changes the observer’s chro- 

atic perception when viewing it. The distribution of the chro- 

aticity coordinates estimated before and after coating removal 

as found to increase with coating removal, showing an increased 

olor volume and a shift towards higher J′ values, except for Paint- 

ng 5. Paintings 1 through 4 showed average variations of the JND 



J.A.R. Monteiro, L. Cardeira, A. Bailão et al. Journal of Cultural Heritage 74 (2025) 322–331

Fig. 7. CIECAM16-UCS color gamut resulting from the virtual removal of the coating for Painting 1. RPS1 (x , y ) (λ) (red dots) represent the simulation using the average coating, 

RPS2 (x , y ) (λ) (green dots) represent the simulations using Kubelka-Munk theory and RPS3 (x , y ) (λ) (yellow dots) represent the simulation using the NN. Shadowed area represents 

the color gamut projection in the CIECAM16-UCS (a’,b’) chromaticity diagram. Fig. 5 represents the color volume obtained after the removal of the painting’s coating, which 

serves as reference for comparison. 

Table 2 

Variation in the JND as the ratio between the JND from the painting simulated for the virtual removal of the coating and the JND for the original painting without the 

coating, Psimulated : Poriginal , in CIECAM16-UCS and CIECAM16-UCS (a’, b’). Values in brackets represent the standard deviation associated with the average estimated across 

analyzed paintings. 

JND ( Psimulated : Poriginal ) 

Painting CIECAM16-UCS RPS1 (x,y ) (λ) RPS2 (x,y ) (λ) RPS3 (x,y ) (λ) 

1 (J’, a’,b’) 0,4 2,0 0,8 

(a’,b’) 0,6 1,9 0,9 

2 (J’, a’,b’) 0,5 3,9 0,8 

(a’,b’) 0,6 3,8 0,9 

3 (J’, a’,b’) 0,6 1,7 0,6 

(a’,b’) 0,6 1,4 1,2 

4 (J’, a’,b’) 0,6 2,6 0,5 

(a’,b’) 0,8 1,7 0,8 

5 (J’, a’,b’) 1,1 4,9 0,6 

(a’,b’) 0,9 3,3 0,9 

Average (J’, a’,b’) 0,7 ( ±0,2) 3,0 ( ±1,2) 0,7 ( ±0,1) 

(a’,b’) 0,7 ( ±0,1) 2,4 ( ±1,0) 0,9 ( ±0,1) 

Table 3 

shows the average color difference ( �E′ ) between the original paintings without the coating and the paintings obtained from the virtual simulations of the removal of the 

coating, in CIECAM16-UCS and CIECAM16-UCS (a’,b’). Values in brackets represent the standard deviation associated with the average estimated across the analyzed paintings. 

Average color difference between the original painting without coating and the painting simulated without the coating 

( �E′ ) 

Painting CIECAM16-UCS RPS1 (x,y ) (λ) RPS2 (x,y ) (λ) RPS3 (x,y ) (λ) 

1 (J’, a’,b’) 4,4 ( ±2,5) 9,1 ( ±4,1) 3,5 ( ±2,2) 

(a’,b’) 2,1 ( ±1,5) 2,1 ( ±1,4) 1,4 ( ±0,9) 

2 (J’, a’,b’) 3,4 ( ±2,2) 4,7 ( ±3,8) 2,0 ( ±1,3) 

(a’,b’) 1,1 ( ±0,7) 2,4 ( ±2,1) 0,9 ( ±0,6) 

3 (J’, a’,b’) 3,4 ( ±2,2) 6,1 ( ±3,1) 2,7 ( ±1,9) 

(a’,b’) 1,2 ( ±0,7) 2,1 ( ±1,0) 1,1 ( ±0,6) 

4 (J’, a’,b’) 2,9 ( ±1,7) 3,5 ( ±1,9) 2,0 ( ±1,4) 

(a’,b’) 1,0 ( ±0,6) 2,1 ( ±1,3) 0,9 ( ±0,6) 

5 (J’, a’,b’) 5,6 ( ±3,6) 19,4 ( ±9,5) 2,6 ( ±1,6) 

(a’,b’) 2,0 ( ±1,4) 9,7 ( ±4,6) 1,4 ( ±0,9) 

Average (J’, a’,b’) 3,9 ( ±1,0) 8,6 ( ±5,7) 2,6 ( ±0,5) 

(a’,b’) 1,5 ( ±0,5) 3,7 ( ±3,0) 1,1 ( ±0,2) 
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reater than 1 with coating removal, implying increased chromatic 

ariability and higher saturation. 

Painting 5 exhibited a unique pattern, as removing the coating 

esulted in a contraction of the color volume and a reduction in 

he JND. The cracks found in Painting 5′ s coating increased reflec- 

ion at the air-coating interface and affected light absorption and 

ransmission [ 65 ] increasing the reflected light measured by the 

IS. Removing the coating eliminated these cracks, leading to a 

ower estimated color volume and reduced JND. Although similar 

racks were found in all paintings, Painting 5 had the most pro- 
328
ounced effect. Since no analysis was performed on the overall 

egree of degradation of the coating, it is possible that the coat- 

ng over this painting was still saturating the colors while fulfilling 

ts protective function. 

The estimated color differences between the painting with coat- 

ng and the simulated removal of the coating may be directly cor- 

elated with the perceptual differences perceived by the CIE2006 

tandard observer when observing the paintings. A �E > 1 . 0 was 

ssumed as the JND threshold, as paintings were considered com- 

lex stimuli, increasing the magnitude of the JND found for sim- 
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Fig. 8. sRGB renderings of the reflectance data retrieved from the original Painting 1 without the coating ( R P n COATING 
(λ) ) and the three simulations of the virtual removal of 

the coating ( R P S1 (x,y ) (λ) , RP S2 (x,y ) (λ) , and R P S3 (x,y ) (λ) ) for simulation methods 1, 2 and 3, respectively. These images do not represent true colors and are intended only as 

visual representations of the simulation results. Quantifications of the simulation results are represented in Table 2 and Table 3 . 
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le and uniform stimuli of about 0.5 units [ 66 ]. When comparing 

olor differences between the paintings without the coating and 

heir simulated versions, the average color differences were found 

o be higher than 1, indicating that the simulated paintings were 

erceptually distinct from the original paintings without the coat- 

ng. 

The Kubelka-Munk two-constant theory, R P S2 (x,y ) (λ) , generated 

imulations with the highest color differences compared to the 

riginal paintings without the coating, approximately 9 and 4 

imes higher than the unitary reference. These simulations showed 

n expanded color volume as inferred from the JND ratios, indicat- 

ng the presence of more saturated colors and colors with a higher 

ange of J′ values. Such color differences were unexpected when 

ompared with other methodologies. One explanation could be the 

xistence of debris, dirt, and an aged coating with several cracks 

hat could impair the Kubelka-Munk model when simulating the 

ransmittance of the coating, which assumed a uniform layer of 

lear coating. 

No analysis was performed to determine the refractive index of 

he aged varnish. However, a refractive index of 1.5 was assumed 

hen required, based on the typical refractive index of commonly 

sed varnishes. All computations were performed without knowing 

he exact composition of the coatings. Nevertheless, using spectral 

ata from the paintings with and without coating was sufficient to 

btain these results. 

When estimating the average reflectance of the 50 brightest and 

arkest pixels, individual pixels were selected instead of broader 

reas to ensure that lighter or darker pixels were considered but 

hen averaged to minimize the influence of signal noise from in- 

ividual pixels. However, some paintings did not contain purely 

hite or black substrate pixels, limiting the applicability of the 

ubelka-Munk theory. To overcome this limitation, a new simu- 

ation was tested with fewer than 50 of the darkest or brightest 

ixels. The simulations produced worse results, demonstrating that 

sing single pixels or a very small number of pixels should be 

voided. 

Additionally, methodology R P S1 (x,y ) (λ) could not simulate the 

emoval of the coating as good as methodology R P S3 (x,y ) (λ) , as 
329
sing the average spectral reflectance estimated across all pixels 

f the hyperspectral image, disregarding local non uniformities, 

ebris or dust that may vary across painting’s surface, hindered 

he simulation of the paintings without the coating. To support 

his statement, local averages of the reflectance spectra were used 

hen simulating the removal of the coating, starting with pixel- 

ise simulation to ever increasing clusters of pixels. Using Eq. (2) , 

he best results were found when the simulation was estimated 

ixelwise, revealing good results but unpractical and not useful, as 

t would require the entire painting with and without the coat- 

ng to extract the reflectance spectra at the pixel level, making 

he simulation redundant. If increasing clusters of pixels were con- 

idered as the local average reflectance, the color difference be- 

ween the simulation and the original without the coating would 

e below 1 unit in CIECAM16-UCS only if a cluster of 5 × 5 pixels 

as considered. Higher clusters of pixels produced a result worse 

han methodology R P S3 (x,y ) (λ) . Nevertheless, having the average 

pectral reflectance of a cluster of 5 × 5 pixels across the entire 

ainting would require access to the complete hyperspectral im- 

ge of the painting with and without the coating, also making the 

imulation redundant. If methodology RPS1 (x , y ) (λ) used the same 

ixel area (W30) as methodology R P S3 (x,y ) (λ) , results would still 

e worse than those obtained with methodology R P S3 (x,y ) (λ) . 

Methodology R P S3 (x,y ) (λ) , considering the area of pixels that 

ould be hidden underneath the painting’s frame (W30), provided 

he simulated image without the coating that was closest to the 

riginal in terms of the JND and the �E′ . When ignoring the 
′ coordinate, color differences were even smaller, making the sim- 

lated and original paintings very close in chromatic and visual 

erms. 

The impact of cross training the NN with one painting and test- 

ng the coating removal simulation with another painting was also 

ested using methodology R P S3 (x,y ) (λ) , resulting in an increase in 

he average color differences across paintings to around 4 �E′ , 
ndicating that the simulation improves when the NN is trained 

ith pixels from the painting that will be used in the simulation. 

ross-training the NN impairs the results obtained, but they are 

till closer to and better than other methodologies tested. 
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Despite the simple structure of the NN used in methodology 

 P S3 (x,y ) (λ) , and the use of peripheral pixels in training (around 

0 % of the painting’s pixels, typically covered by the painting’s 

rame), the simulations of the removal of the coating were closer 

o the original. Using only surrounding pixels did not seem to im- 

act greatly the simulation, as in methodology R P S1 (x,y ) (λ) , despite 

he fact that peripheral pixels did not represent all the spatial vari- 

tions in the thickness of the coating, the existence of dirt on or 

nder the coating, and the exposure to other external factors (as 

he area of the painting these pixels represent was, generally, un- 

er a frame). The complex process of removing the coating from 

he paintings, described in the Supplementary Materials, revealed 

he nonuniformity and spatial variation of the coating, supporting 

he need for a methodology that could consider the painting with 

nd without the coating across its surface. Analyzing the surround- 

ng area of the painting that was under the frame enabled just 

hat. These are common artefacts that exist in real cases of restora- 

ion and a limitation in the performance of some of the method- 

logies presented. Nevertheless, the methodologies evaluated are 

ndependent of the painting technique, pigments, binders, compo- 

ition, substrate, among others. Additionally, these intrinsic prop- 

rties of each painting could not be isolated in this study to de- 

ermine their influence on the results. Only the spectral changes 

hen removing the coating were required, and only one model 

 R P S2 (x,y ) (λ) ) required assumptions regarding the coating type. 

. Conclusion 

Removing the paintings’ coating resulted in changes in their 

olor perception, demonstrated by an increase in their chromatic 

iversity and color saturation. Nevertheless, caution is needed 

hen considering simulations of the coating removal, as accurate 

redictions require a comprehensive understanding of the coating’s 

roperties, including its condition, distribution, uniformity, and ex- 

osure to external factors. In the absence of such data, the use of 

odels as the Kubelka-Munk theory may be impaired. 

The NN generated simulations that closely resembled the orig- 

nal painting without the coating, a simulation that was improved 

f the J′ (lightness) color coordinate was not considered. Despite its 

imple structure and use of only 10 % of the painting’s hyperspec- 

ral image data, the NN could simulate accurately the removal of 

he coating. The NN method was not only the most accurate but 

lso achieved the best result with minimal visible intervention by 

equiring intervention only in the area that sits under the paint- 

ng’s frame. 

These results show the suitability of three methods for simulat- 

ng the removal of the coating from paintings based on the spectral 

eflectance of the paintings, with better results when using a NN 

o perform the simulation. 

Simulating the coating removal with minimal intervention, as 

chieved by the NN method, provides a valuable tool for conserva- 

ors to devise conservation plans that preserve the integrity of the 

riginal artwork. 
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