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Hábitos Alimentares e Resistência aos Antimicrobianos: Uma 

Caracterização Metagenómica dos Resistomas Humanos na Europa 

Resumo 

A resistência aos antimicrobianos (RAM) é um problema crescente a nível 

mundial, exigindo uma análise aprofundada dos seus determinantes nas populações 

humanas. Este estudo exploratório caracteriza o resistoma humano em populações 

europeias, com base na análise de 932 conjuntos de dados metagenómicos obtidos 

através do American Gut Project. Foram examinadas possíveis correlações entre 

regiões geográficas, frequência de genes de RAM e padrões alimentares, classificados 

em consumo de carne vermelha e de aves (RPMC), ausência de carne vermelha 

(NRMC) e dietas vegetarianas ou veganas (NMC). 

Foi utilizada uma metodologia bioinformática padronizada para detecção de 

genes de RAM com base na base de dados PanRes e na ferramenta KMA. A 

classificação taxonómica das bactérias foi realizada com o Kraken. As abundâncias 

foram normalizadas por meio da transformação Additive Log-Ratio (ALR), a fim de 

minimizar os enviesamentos associados à natureza composicional dos dados 

metagenómicos. 

Os resultados indicam pequenas diferenças na abundância relativa de genes de 

RAM entre tipos de dieta, com valores mais elevados observados no grupo que segue 

uma dieta omnívora com consumo de carne vermelha e de aves (RPMC). Entre os 

diferentes países, também se observou variação na abundância relativa de genes de 

RAM, com valores mais elevados registados na Alemanha, Bélgica, Países Baixos e 

Dinamarca. No entanto, estes padrões descritivos devem ser interpretados com cautela, 

devido ao número limitado de amostras positivas para RAM e à distribuição desigual 

entre os grupos analisados. 

Embora os resultados sejam essencialmente descritivos, apontam para a 

potencial importância de factores dietéticos e geográficos na vigilância da RAM. São 

necessários estudos adicionais com amostras mais equilibradas e metadados 

ambientais e dietéticos detalhados. Este estudo destaca ainda a relevância da 

abordagem One Health na resposta integrada ao desafio da resistência aos 

antimicrobianos. 

 
 

Palavras-chave: Resistência Antimicrobiana, Resistoma Humano, Hábitos Alimentares, 

Metagenómica 
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Dietary Habits and Antimicrobial Resistance: A Metagenomic 

Characterization of Human Resistomes Across Europe 

Abstract 

Antimicrobial resistance (AMR) is a growing worldwide problem that calls for a 

detailed study of its determinants in human populations. This initial study outlines the 

human resistome found among European populations based on a study of 932 

metagenomic data sets obtained through the American Gut Project. This study examines 

possible relationships between the abundance of AMR genes and geographic regions 

as well as diet patterns classified as red and poultry meat consumption (RPMC), non-

red meat consumption (NRMC), and vegetarian or vegan (NMC). 

A standard bioinformatics workflow was used, including the PanRes Database 

and KMA to discover antimicrobial resistance (AMR) genes, and Kraken for taxonomic 

bacterial classification. Abundances were normalized by using Additive Log-Ratio (ALR), 

due to the compositional nature of the data. 

The results indicate small differences in the relative abundance of AMR genes 

between dietary groups, with numerically higher values observed in the Red and Poultry 

Meat Consumption (RPMC) group. Across countries, variation in AMR gene abundance 

was also observed, with Germany, Belgium, Netherlands, and Denmark presenting 

higher relative values than other regions. However, these descriptive patterns must be 

interpreted with caution due to the limited number of AMR-positive samples and the 

uneven distribution across groups. 

While the results are mainly descriptive, they highlight the potential importance 

of dietary and geographical factors in AMR surveillance, which supports the relevance of 

a One Health approach in addressing AMR from an integrated perspective. It is however 

essential to perform further studies using large and well-designed datasets in order to 

confirm the findings.  

 

 

 

 

 

 

Key-Words: Antimicrobial Resistance, Human Resistome, Dietary Habits, 

Metagenomics 



vi 
 

Resumo Alargado 

Hábitos Alimentares e Resistência aos Antimicrobianos: Uma 

Caracterização Metagenómica dos Resistomas Humanos na Europa 

A resistência aos antimicrobianos (RAM) constitui um dos maiores desafios de 

saúde pública do século XXI, que ameaça as práticas clínicas modernas e as 

infraestruturas de saúde pública em todo o mundo. Apesar da quantidade substancial 

de estudos realizados sobre os antimicrobianos e o fenómeno correspondente da 

resistência, ainda existem importantes lacunas de conhecimento sobre os mecanismos 

através dos quais a dieta e a geografia podem influenciar padrões de resistência. Este 

estudo visa preencher esta lacuna científica ao fornecer uma descrição metagenómica 

dos resistomas humanos em diferentes populações europeias, explorando se e como a 

dieta e a geografia podem influenciar a frequência e abundância dos genes de RAM. 

O principal objetivo deste estudo foi realizar comparações exploratórias sobre 

até que ponto a dieta, mais precisamente, o consumo de carne vermelha e de aves 

(RPMC), a evitação da carne vermelha (NRMC) e a adoção de dietas vegetarianas ou 

veganas (NMC), pode influenciar tanto a abundância como a diversidade dos genes de 

resistência antimicrobiana na microbiota intestinal humana.  

Para cumprir este objetivo, o estudo analisou 932 amostras metagenómicas 

obtidas do intestino humano pelo projeto American Gut Project (AGP). As amostras 

foram selecionadas intencionalmente com base na correspondência geográfica com os 

países europeus participantes no projeto EFFORT. As amostras foram classificadas em 

diferentes padrões dietéticos (RPMC, NRMC, NMC) com base em metadados dietéticos 

disponíveis. Utilizou-se uma estratégia rigorosa de controlo de qualidade (QC) e pré-

processamento das amostras com o FoodQCpipeline e bbtools, para remover leituras 

de baixa qualidade, adaptadores e contaminantes, assegurando leituras limpas e de alta 

qualidade. 

A deteção e quantificação dos genes de resistência antimicrobiana recorreu a 

ferramentas bioinformáticas, incluindo a base de dados PanRes, uma base altamente 

curada para genes de RAM e o K-mer Alignment (KMA), um software 

computacionalmente eficiente e altamente eficaz para estudos metagenómicos. O KMA 

permitiu o mapeamento exato de leituras curtas de metagenomas para a base de dados 

PanRes, identificando clusters de genes de resistência. As abundâncias relativas dos 

clusters de genes foram normalizadas usando transformações aditivas log-rácio (ALR), 

que ajustam a variação da composição entre as amostras devido a desequilíbrios nas 

estruturas das comunidades microbianas. 
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As contagens bacterianas foram obtidas através do Kraken, proporcionando uma 

visão geral da composição bacteriana ao longo do conjunto de dados. Embora não tenha 

sido realizado um perfil taxonómico completo, estas contagens serviram de base para 

os processos subsequentes de normalização, permitindo comparações mais precisas 

das abundâncias dos genes de resistência aos antimicrobianos entre os grupos 

dietéticos e geográficos. A análise descritiva identificou também padrões preliminares 

de relacões entre dieta e geografia com disparidades na composição dos resistomas 

humanos.  

Dietas classificadas como omnívoras (RPMC) apresentaram valores 

numericamente mais elevados de abundância relativa de genes de RAM em 

comparação com dietas vegetarianas ou com restrição de carne (NMC e NRMC). No 

entanto, estas diferenças devem ser interpretadas com cuidado, dado o número 

reduzido de amostras disponíveis nos grupos não carnívoros. A abundância relativa de 

genes de RAM também variou entre países, com valores mais elevados observados na 

Dinamarca, Países Baixos, Alemanha e Bélgica, e mais baixos em países como Itália, 

Bulgária e Espanha. Estas variações são apresentadas de forma descritiva e não devem 

ser interpretadas como reflexo direto de políticas nacionais ou outros determinantes 

contextuais, dada a natureza exploratória do estudo e a distribuição desigual das 

amostras entre países. 

A resistência a tetraciclinas, beta-lactâmicos e macrólidos foi encontrada em 

diferentes dietas e países, refletindo presumivelmente o uso generalizado destes 

antibióticos na medicina humana e veterinária em toda a Europa, apontando para a 

necessidade de programas específicos de gestão antimicrobiana. 

Estes resultados exigem uma consideração meticulosa das limitações 

subjacentes, incluindo um tamanho relativamente modesto das amostras, distribuições 

não uniformes das amostras entre países e padrões alimentares, e falta de informação 

completa sobre o uso de antibióticos nas populações estudadas. Além disso, as bases 

de dados publicamente disponíveis podem carecer de variáveis contextuais 

importantes, como os hábitos de aquisição alimentar, estatuto socioeconómico e acesso 

a cuidados médicos, que podem afetar a composição do resistoma no trato 

gastrointestinal. 

Apesar destas limitações, este estudo exploratório inicial fornece as primeiras 

indicações de possíveis associações entre hábitos dietéticos, origens geográficas e 

prevalência de RAM nas populações humanas da Europa. Destaca a complexidade das 

vias de transmissão da RAM e confirma a necessidade de uma abordagem 
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multidisciplinar "Uma Só Saúde" (One Health) na vigilância e controlo da RAM. Além 

disso, sugere a importância dos componentes dietéticos nas estratégias de saúde 

pública para abordar a RAM, indicando o caminho para futuras investigações através de 

intervenções dietéticas e alterações políticas no uso agrícola de antibióticos. 

Estudos futuros devem procurar expandir a dimensão populacional da amostra, 

alcançar uma distribuição ótima das amostras e utilizar documentação detalhada do uso 

de antibióticos. Ensaios metodologicamente robustos de intervenções dietéticas e 

estudos longitudinais baseados em metagenómica funcional podem testar 

adequadamente e esclarecer estas observações preliminares, estabelecendo com 

maior precisão se os genes de resistência identificados são funcionalmente expressos 

e clinicamente relevantes para o avanço da compreensão da dinâmica de transmissão 

da RAM. 

Em conclusão, esta investigação fornece a plataforma de base para explorar a 

possível interação entre hábitos dietéticos, fatores geográficos e a disseminação dos 

genes de RAM nos microbiomas intestinais humanos na Europa. Destaca a necessidade 

essencial de programas abrangentes de monitorização da RAM e estratégias integradas 

de gestão informadas pelo conceito Uma Só Saúde, para combater o problema global 

da resistência antimicrobiana de forma eficaz. 
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1. Activities during the Master’s Internship 

Before starting the internship in Denmark, I undertook a preparatory training 

period from September to December 2023 at the Faculty of Veterinary Medicine, 

University of Lisbon, under the supervision of Prof. Telmo Nunes. This preliminary 

internship focused on veterinary epidemiology and provided a solid foundation in data 

handling, statistical analysis, and the use of R for data science applications. Working 

with various datasets, I developed essential skills in data transformation, visualization, 

and critical thinking, which proved crucial for the subsequent research work. This 

experience also enabled skills such as autonomy, teamwork, and adaptability, 

competences that were important during the main internship period. 

My curricular internship took place at the National Food Institute of Denmark, 

where I worked on bioinformatics, metagenomic analysis, and AMR research. The 

internship initially focused on evaluating the transmission of antimicrobial resistance 

between food-producing animals and humans by investigating whether AMR genes 

commonly found in animals were also present in human gut microbiomes. However, due 

to the limited number of relevant samples, the scope was adjusted to the analysis of 

AMR gene abundance in human populations with different dietary habits across Europe, 

leading to my master’s thesis, titled “Dietary Habits and Antimicrobial Resistance: A 

Metagenomic Characterization of Human Resistomes Across Europe.” 

Throughout this period, I was responsible for retrieving and processing public 

metagenomic datasets from healthy human populations, ensuring proper metadata 

extraction and sample structuring for analysis. I applied bioinformatics and computational 

methods to assess the presence and distribution of AMR genes across different dietary 

groups and countries. Using tools such as Kraken for taxonomic classification and KMA 

and Bowtie2 for AMR gene identification, I characterized the resistome profiles of 

individuals with different dietary habits. 

To further analyse patterns in AMR gene abundance, I implemented data 

normalization techniques, conducted descriptive statistical analyses, and explored 

multivariate approaches to identify potential patterns. Additionally, I applied machine 

learning algorithms in R and Python to explore potential predictive relationships between 

dietary habits and AMR transmission dynamics. 

While the study's initial goal was to examine AMR gene overlap between human 

and animal microbiomes, the revised focus allowed for a targeted investigation into how 

dietary choices may influence AMR exposure in humans. 
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During the internship, I engaged in weekly follow-up meetings with my 

supervisors, actively discussing research progress and challenges. I collaborated with a 

multidisciplinary research team, gaining experience in scientific communication, 

problem-solving, and independent research development. At the end of the internship, I 

presented my findings to the host research group, strengthening my oral presentation 

and scientific reporting skills. 

This experience significantly expanded my expertise in bioinformatics, data 

science, and antimicrobial resistance research, enhancing my ability to handle large-

scale metagenomic data, apply computational analysis tools, and critically interpret AMR 

patterns. It also underscored the importance of adaptability in research, as shifting 

objectives based on data availability was essential in refining the study’s scope. 

Ultimately, the internship provided valuable hands-on experience that has shaped my 

approach to scientific research and strengthened my ability to contribute to the field of 

AMR surveillance and microbiome studies. 

 

2. Main objectives and study design 

The main goal of this research was to investigate AMR in human populations after 

the inspiration provided by the EFFORT project (2017), which investigated the resistance 

of animals in certain countries of Europe. Whereas EFFORT aimed at cataloguing 

resistance patterns in animal populations, this research broadens its scope to the human 

resistome, investigating metagenomic data sets from the same nations to determine if 

there are variations in the resistance profiles. 

Among the main objectives of this study was to see geographically how AMR 

patterns differ and if they align with dietary patterns. By combining metagenomic data 

and dietary data, the study sought to identify if dietary patterns, red meat, no red meat, 

and vegetarian diets are linked with resistome structures. Identifying these associations 

may give insight into environmental and lifestyle determinants of antimicrobial resistance 

in human populations. 

Aside from the detection and characterization of AMR gene clusters from human 

metagenomic samples, a secondary goal of this research was to develop a robust and 

reproducible methodological pipeline for detecting AMR gene clusters using publicly 

available data. This will make the results reliable and open to follow-up studies on the 

human resistome. 
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3. Literature Review - Antimicrobial Resistance: A Looming Global Crisis  

3.1. Emergence and Evolution of Antimicrobial Resistance 

Antimicrobials are one of the cornerstones of modern medicine. They are used 

to prevent and treat infectious diseases in humans, animals and plants (Murray et al. 

2022). So, if we return to the origin of the use of antimicrobial substances in medicine, it 

goes as far back as the ancient Egypt, where mouldy bread and honey were used on 

infected wounds(Kopp et al. 2003). In the 19th century, Joseph Lister and Louis Pasteur 

observed mould that could inhibit the growth of bacteria, with Lister successfully treating 

injuries using Penicillium glaucum in 1871. In 1889, Jean Paul Vuillemin defined 

'antibiosis' as any biological relationship in which “one living organism kills another to 

ensure its own existence”. In 1909, Paul Ehrlich discovered arsphenamine for the 

treatment of syphilis(Gelmo 1908).  

The search for substances to combat infections has a long and complex history, 

with each discovery building upon previous findings. A breakthrough occurred in 1928, 

when Alexander Fleming accidentally discovered the first true antibiotic, penicillin, after 

observing that a fungus inhibited the growth of Staphylococcus aureus colonies (Fleming 

1929).In the following decade, Gerhard Domagk identified the antibacterial properties of 

sulphanilamides, which were later marketed as Prontosil® in 1935 and played a crucial 

role during World War II (Lewis 2013). Although the potential of penicillin was recognized 

early, it was not produced on an industrial scale until 1940. 

Since then, antibiotics (AB) have become the most significant class of 

pharmaceuticals and one of the most influential medical inventions and are a boon to 

human society in the fight against bacterial infections, saving millions of lives (Cunha et 

al. 2019). However, the activity of AB is challenged by the ability of the bacteria to develop 

resistance against them, thus compromising their efficacy (Gajdács and Albericio 2019). 

By the late 1960s, the emergence of antibiotic-resistant pathogens was already evident, 

with penicillin-resistant strains having emerged has early has the 1940s. (Spellberg et 

al. 2008). In the decades that followed, particularly during the so-called “golden era” of 

antibiotic discovery (1940s–1960s), the pharmaceutical industry developed a steady 

amount of new antibiotics, which helped mask the growing threat of resistance. This 

abundance of new drugs created a false sense of security, leading to a lack of sustained 

investment in resistance monitoring and stewardship strategies (Anderson et al. 2023). 

As a result, the urgency to address antimicrobial resistance diminished, allowing it to 

become a silent but escalating global health crisis. 
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The rapid dissemination of antibiotic resistance in pathogens has rendered once 

highly effective antibiotics obsolete in recent decades (Lee Ventola 2015). The struggle 

against antibiotic resistance underscores the ongoing need for adaptive research 

strategies in managing infectious diseases (Sengupta et al. 2013). The limited 

introduction of new antibiotic classes for medical use, with the last new class  

(oxazolidinones) introduced in 1990, underscores the urgency of discovering novel 

antibiotics with prolonged efficacy against life-threatening infections (Ragnar Norrby et 

al. 2005). 

As we confront the depletion of antibiotic reserves, concerns grow about the 

potential regression to a pre-antibiotic era (Brandt et al. 2014). The clinical management 

of infections by antibiotic-resistant pathogens presents an increasing challenge, 

demanding for solutions (Brandt et al. 2014). 

3.2. Economic and Social Impact on Human Health 

On 22 October 2015, the World Health Organization (WHO) has launched the 

Global Antimicrobial Resistance and Use Surveillance System (GLASS), and global data 

reveals a long withstanding increase in antimicrobial resistance (AMR), now identified as 

one of the leading causes of death (Murray et al. 2022). 

In 2019, 4.95 million deaths were attributed to bacterial AMR globally, with 1.27 

million specifically linked to bacterial resistance (Murray et al. 2022). The United States 

witnessed more than 2.8 million infections caused by antibiotic-resistant bacteria (CDC 

2019) and the report shows that Western sub-Saharan Africa has the highest death rate 

due to bacterial AMR, at 27.3 deaths per 100,000 individuals (Murray et al. 2022). 

AMR is also a major public health concern in the WHO European Region, with 

estimates from the European Union/European Economic Area (EU/EEA) alone showing 

that each year more than 670 000 infections are due to bacteria resistant to antibiotics 

and approximately 33 000 people die as a direct consequence(ECDC 2022). 

The impact of AMR on Human healthcare systems is increasing as the 

effectiveness of antibiotics against bacterial infections decreases. Treating resistant 

infections is getting more challenging, and as a result, patients need longer 

hospitalizations and more isolation beds. All of this has a cost, directly increasing with 

the raise of the resistance levels, and walking side by side with the prices of the 

treatments, that will become more expensive both for patients and hospitals. Some 

studies point that AMR can cost from $300 billion to $2.9 trillion worldwide, by 2050 

(Watkins and Bonomo 2016; World Bank Group 2017).  
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There are also secondary effects of AMR on non-infectious medical conditions. 

For example, surgeries that usually require the use of antibiotics to decrease the risk of 

post-surgery infections may become compromised. This implies that medical conditions 

currently treatable through procedures such as surgery, transplants, or dialysis may 

become untreatable (Santoro-Lopes and De Gouvêa 2014; Naylor et al. 2018). Similarly, 

AMR is expected to influence the path of diseases like cancer. The immune system of 

cancer patients is compromised by chemotherapy, making them vulnerable to infections. 

If this cannot be addressed with effective antimicrobials, the risks associated with 

chemotherapy may increase (Dadgostar 2019). 

Beyond the substantial expenses associated with antibiotic research and 

development, the accelerated evolution of AMR has led to low investment returns for the 

pharmaceutical R&D industry. Because of this, numerous pharmaceutical companies 

have already abandoned antibiotic research and the development of new antibiotics 

(Uddin et al. 2021). 

The impact of AMR does not only apply to human lives, but also to livestock. Just 

like in human medicine, animal treatment will be less effective leading to more severe 

infections(Dadgostar 2019), and increasing mortality and morbidity (Hao et al. 2014). As 

a consequence, animal production might decrease and products such as meat, milk and 

eggs, protein sources with rising demand worldwide (Van Boeckel et al. 2015), may 

become less available and less affordable (World Bank Group 2017; Dadgostar 2019). 

The estimates predict that if the patterns in AMR do not change, 11% of livestock 

production will decrease by 2050 (World Bank Group 2017), which will also come with 

animpact in income generation (Dadgostar 2019). 

The AMR crisis poses a severe challenge to both human and animal lives, as well 

as to the global economy.  

3.3. Public Health Implications of Human-Animal AMR Transmission 

The spread of antibiotic resistance through human contact with animals poses a 

significant threat to public health. The use of antibiotics in livestock production and 

veterinary medicine has accelerated the emergence of antibiotic resistance in zoonotic 

bacteria, by promoting the horizontal transfer of resistance genes across different 

bacterial species. The food supply chain, environmental contamination, or animal 

husbandry can all serve as a gateway to the zoonotic transmission of AMR, and lead to 

gradual spread of resistance across different ecosystems (Jin et al. 2023). 

Interconnectedness among resistant bacteria from animals and humans has 

been demonstrated in several epidemiological studies. The coinciding antimicrobial 
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resistance genes (ARGs) in human clinical isolates and those found in bacteria from farm 

animals suggests the movement of resistance determinants across species. This is most 

problematic in the context of long-term antibiotic application in animal husbandry, or the 

use in animals of antibiotics critical for human treatment, which may promote the 

emergence of multidrug-resistant bacterial strains. Methicillin-resistant Staphylococcus 

aureus (MRSA) and ESBL-producing Escherichia coli are examples of resistant bacteria 

with some degree of zoonotic transmission(Köck et al. 2013; Iramiot et al. 2020). 

Besides the possible direct health effects, transmission of AMR at the human-

animal interface also impacts public health policy. The zoonotic transmission of resistant 

bacterial strains into human populations may lead to regional and global outbreaks, thus 

underlining the importance of human-animal interaction in shaping AMR epidemiology. 

(WHO 2024). 

The environment serves as a reservoir and vector for resistant bacteria. Both 

antimicrobial drugs and resistant microbes can move into soil and water systems through 

agricultural run-off and inadequate waste management. Wildlife can subsequently 

acquire and spread these resistant strains through ecosystems, possibly introducing 

them to human populations. Research has indicated that wildlife species, though often 

recipients of AMR, are vectors that can transmit resistance through numerous 

environmental pathways (Olaru et al. 2023). 

The consumption of animal food products infected with resistant bacteria is a 

significant pathway of AMR spread to humans. Antimicrobial administration in food-

producing animals can select for resistant bacterial populations, which can be passed on 

to humans through the food chain. A review has demonstrated the potential of food 

animals to act as reservoirs of antimicrobial resistance genes encoding for resistance 

against antibiotics of clinical importance for human treatment (Vezeau and Kahn 2024; 

Mcewen and Fedorka-Cray 2002). 

Lastly, understanding the transmission dynamics of AMR between animals, the 

environment and humans is essential to adequately quantify the public health impact of 

resistance and predict future trends. Extensive scientific evidence underlines the 

importance of an integrated, holistic AMR research strategy, acknowledging the dynamic 

interface of animal, environmental and human microbial populations and the complex 

transmission pathways of resistance (McEwen and Collignon 2018). 

3.4. AMR: A threat to Food Safety 

The food chain has a critical role in AMR transmission, due to its action in 

connecting animals, the environment, and humans. The increase in consumption of meat 
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has intensified this link, due to the increased use of antibiotics in livestock production 

and its contribution to the development of AMR (Ruiz and Alvarez-Ordóñez 2017). 

Globally, livestock raised for food accounts for 73% of antibiotic usage during production 

(Van Boeckel et al. 2015; Van Boeckel et al. 2019). This usage in livestock production 

surpasses that in vegetable crop farming (Jans et al. 2018). 

In addition to various foods such as vegetables, fruits, dairy products, and eggs 

(Acar and Moulin 2006), it is estimated that approximately 50% of meat and seafood 

products are contaminated with bacteria (Jans et al. 2018). Therefore, proper 

surveillance of AMR bacteria from farm-to-fork in the food chain is critical to control the 

zoonotic spread of resistance  (EFSA 2014). 

As said earlier, the environment is also involved in AMR transmission.  The ABs 

that are used in animals and humans are excreted and their residues may remain active 

in waste, eventually re-entering the food chain via the application of manure or 

wastewater in crops (Thanner et al. 2016). 

The significance of food as a pathway for the spread of AMR is not always 

adequately recognised (EFSA 2008). The primary concerns in this area involve food 

spoilage and consumption of raw or undercooked products, which serve as pathways for 

antimicrobial-resistant bacteria (AMRB) to enter the food supply chain (Bohaychuk et al. 

2009; Hansen et al. 2010; Losio et al. 2015; Di Ciccio 2021). There are different routes 

via which AMR can be transferred to humans through the food chain, whether it is 

indirectly, through food consumption or directly, through contact with infected animals or 

their biological fluids, for example during slaughter: blood, urine, feces, saliva and semen 

(Chang et al. 2015). 

The relevance of this transmission pathway is being increasingly recognised, 

adding importance to the epidemiology of AMR in livestock, which has been a growing 

area of research (Hedman et al. 2020). By that research, it is observable that the AMR 

prevalence in broilers and pigs is increasing in most countries of Europe (Hesp et al. 

2019), justifying the urge to establish a proper AMR surveillance system for livestock to 

comprehend the dimension of this problem (Mader et al. 2022). However, data from the 

European Food Safety Authority (EFSA 2024) highlight that AMR trends are not 

universally increasing, with variations observed between countries, bacterial species, 

and antimicrobial classes, and some instances showing stable or decreasing resistance 

patterns. 
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3.5. The One Health Perspective of AMR 

Bacteria gain resistance through natural selection, for example by acquiring 

resistance genes that confer them an evolutionary advantage. Such genes can spread 

across different bacterial species inhabiting in different reservoirs (Bürgmann et al. 2018; 

Kimani et al. 2019). AMR emerges as a threat affecting the three One Health pillars: 

humans, animals, and the environment. Thus, a One Health surveillance system is 

essential to understand the AMR epidemiological challenge, and to uncover the links 

between AMR and an irresponsible use of antimicrobials in the diverse sectors (JIM 

O’NEIL 2016; Collignon et al. 2018),  inadequate infection control, and the contamination 

of the environment (Bürgmann et al. 2018; Kimani et al. 2019) 

Interdisciplinary and global measures are crucial for controlling AMR (Collignon 

and McEwen 2019). That said, organizations such as the World Health Organization 

(WHO), the World Organisation for Animal Health (WOAH, formerly OIE), and the Food 

and Agriculture Organization of the United Nations (FAO) have long collaborated on the 

Global Action Plan on Antimicrobial Resistance (WHO 2017). More recently, this 

collaboration has evolved into the Quadripartite Alliance, now including the United 

Nations Environment Programme (UNEP), which coordinates global action on AMR 

under the One Health approach, addressing the interconnected risks across human, 

animal, plant, and environmental health. This plan focuses on surveillance and research, 

guiding countries in the implementation of surveillance and control of antimicrobial use 

in both humans and animals. A better understanding is obtained from this action plan, 

facilitating the study of AMR spread and the interventions that are needed across all 

sectors (Queenan et al. 2016; Magouras et al. 2017). 

In response to this multi-layered challenge, the One Health approach presents 

itself as a crucial strategy, as it not only alerts for the public awareness to the correct use 

of antimicrobials but also accentuates the importance of an integrated surveillance, 

research, and joint solutions across human, animal, and environmental health. The goal 

is to present a united front against AMR, highlighting the link between the three pillars, 

that share vulnerability and responsibility (Jim O’Neil 2016; Sharma et al. 2018). 

3.6. Impact of Dietary Habits on Human Microbiome Resistome 

Diet plays a key role in determining the composition of the gut microbiome and, 

by extension, influences the resistome, the collection of ARGs in microbial populations. 

Diet influences on the gut microbiome are well established, and specific dietary patterns 

influence microbial diversity, composition, and function(Conlon and Bird 2015; Rinninella 
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et al. 2019). This, in turn, can dictate the emergence and spread of AMR genes, 

rendering diet an essential modifiable component in the battle against AMR. 

The gut microbiome is also extremely sensitive to dietary input, and macronutrient 

composition, for example the consumption of carbohydrates, proteins, and fats, is among 

the key determinants of microbial community structure (Conlon and Bird 2015; Rinninella 

et al. 2019). Diets high in fiber and content of complex carbohydrates are favourable for 

the expansion of health-promoting bacteria such as Bifidobacterium and Lactobacillus, 

which are linked with enhanced gut health and reduced relative abundance of antibiotic-

resistant genes (Rinninella et al. 2019). On the other hand, high consumption of 

processed food and straightforward carbohydrates has been associated with low 

microbial diversity and a rise in potentially pathogenic bacteria, some of which contain 

resistance genes (Conlon and Bird 2015). 

Protein sources also profoundly impact the gut resistome and microbiome. Diets 

rich in red meat and animal protein have been linked to higher levels of various bacteria 

known to harbour resistance genes (Rinninella et al. 2019; Tomova et al. 2019; da Silva 

et al. 2021) Red meat intake, typical in Western diets, has been linked to an expansion 

of sulfate-reducing bacteria (Desulfovibrio spp.) that inflame the gut and potentiate the 

horizontal gene transfer of resistance genes(Rinninella et al. 2019; da Silva et al. 2021) 

Furthermore, residues of antimicrobials in conventionally produced animal meat 

products can lead to resistant strain selection(Milanović et al. 2017; Weinroth et al. 

2022a) 

Conversely, vegetarian and plant diets enrich Prevotella, a genus implicated in 

carbohydrate metabolism and decrease the relative abundance of putative AMR-

harbouring bacteria(Rinninella et al. 2019; Tomova et al. 2019). Vegetarians and vegans 

are reported to have a lower prevalence of AMR genes in their gut microbiome than 

omnivores. This can be explained by the avoidance of dietary antibiotics via consumption 

of animal products(Milanović et al. 2017; Rinninella et al. 2019; da Silva et al. 2021) 

The One Health approach supports the hypothesis that eating habits affect 

personal resistomes, due to the diet’s interconnectedness with the environmental and 

food chain resistomes(Fernández-Trapote et al. 2024). Extensive use of antibiotics in 

farming practices promotes AMR spread along the food chain, where resistant microbes 

can be passed on to consumers through contaminated meat, milk, and plant products 

(Weinroth et al. 2022). This calls for sustainable food policies, including curbing antibiotic 

usage in farming, encouraging organic farming, and encouraging the consumption of 

minimally processed, plant-based foods. 
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Diet is a key determinant of the gut microbiome and resistome. Whereas plant-

based, high-fiber diets are associated with increased microbial diversity and low AMR 

gene loads, high-meat and processed food diets have been associated with high 

resistance gene loads. Such associations hold out the promise of dietary interventions. 

3.7. AMR and Metagenomic Analysis 

Metagenomics is a method of DNA survey in the environment that has 

transformed the study of antimicrobial resistance (AMR) by providing a direct, culture-

free approach to the study of microbial communities and their resistance genes. Rather 

than traditional microbiological techniques that are based on isolating and culturing 

bacteria under laboratory conditions, metagenomics allows the researcher to sequence 

the genetic material of complex microbial ecosystems, hence giving a more 

comprehensive picture of bacterial populations, their functions, as well as the way they 

harbour resistance (Quince et al. 2017). 

One of the highlights of metagenomic techniques is that they can identify both 

the culturable and non-culturable bacteria, thus scientists can investigate microbial 

diversity and resistance gene reservoirs in different settings (Berendonk et al. 2015).  

Typically, culture-based methods can result in the underestimation of microbial 

diversity, as a noticeable proportion of the bacteria in human and environmental samples 

cannot be reproduced in the lab (Lagier et al. 2018). By utilizing a culture-independent 

approach, metagenomics provides a more accurate assessment of bacterial abundance 

and antimicrobial resistance gene (ARG) presence/abundance, thus offering a more 

effective tool for AMR surveillance (van Schaik 2015; Lagier et al. 2018). 

Employing metagenomics for AMR surveillance is particularly useful in human 

health research as it allows the detection of resistance genes, mobile genetic elements, 

and bacterial taxonomic composition within the same sample. This all-encompassing 

approach finds out the bacterial resistant strains that might be rising, studies bacterial 

adaptation, and assesses the impact of selective pressures, for example, the use of ABs 

and dietary habits on the gut microbiome (Penders et al. 2013). For example, studies on 

the gut microbiome and antibiotic treatment have found that antibiotic exposure causes 

a long-term shift in the composition of gut microbes and as a result, AB resistant bacteria 

become the dominant species (M Pärnänen et al. 2019). 

Metagenomic sequencing allows for the detection of horizontal gene transfer 

(HGT), the main driver of AMR gene dissemination among bacterial species. 

Consequently, the resistome (the total complement of AMR genes in a microbiome) can 

undergo rapid evolution through genetic exchange between commensal and pathogenic 



11 
 

bacteria (Forslund et al. 2013). Moreover, metagenomic approaches enable the tracing 

of resistance gene transmission pathways across ecosystems, linking sources like the 

human gut microbiome to environmental sinks such as wastewater and soil (Hendriksen 

et al. 2019). This comprehensive surveillance capability across human, animal, and 

environmental domains positions metagenomics as a key enabling technology for One 

Health AMR monitoring frameworks  (Martinez et al. 2009). 

Notably, large-scale initiatives like the Human Microbiome Project (HMP) and the 

Metagenomics of the Human Intestinal Tract (MetaHIT) project utilized metagenomics to 

characterize the human gut microbiome and its associated resistome (Qin et al. 2010), 

revealing important relationships between host microbiota, diet, and antibiotic exposure.  

Taxonomic and functional surveys performed with the use of metagenomics pave 

the way to trace not only the antibiotic-resistant bacteria but also their ecological roles 

and interactions in microbial communities (Van Goethem et al. 2019). This function 

supports the forecasting of resistance trends, the optimization of antibiotic stewardship 

programs, and the development of the most effective novel antimicrobial strategies. As 

the discipline continues to develop, the use of metagenomic technology in disease risk 

surveillance, and what is often interpreted as personalized medicine will likely increase, 

and thus metagenomics will probably be part of the solution to fight the global problem 

of antimicrobial resistance. (Franzosa et al. 2018). 

 

4. Methodology 

4.1. Data Sources and Selection Criteria 

This research used metagenomic data from the American Gut Project (AGP), 

from samples of 2017 to 2024, explore antimicrobial resistance (AMR) profiles within the 

human gut microbiome in a comparative parallel to the EFFORT project (2017), which 

characterized the faecal resistome of food-producing animals in nine European 

countries. Whereas the EFFORT research gave an understanding of AMR abundance in 

animal populations, the present study sought to map the human resistome in the same 

geographical region and examine the association of possible disparities in resistance 

profiles with dietary lifestyles. 

The AGP was chosen as the primary source of human metagenomic samples 

owing to its large dataset and detailed metadata on participants' lifestyles and diets. AGP 

contains samples from several countries worldwide, including those investigated within 

the EFFORT project. With these data in mind, the aim of the study was to determine if 

dietary habits - no red meat diet, red meat diet, and vegetarian diet - affect the 
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composition of the human resistome. The combination of metagenomic and dietary data 

presents important information on possible drivers of resistance in human populations. 

By integrating human resistome analysis into its research framework, this study 

builds upon the EFFORT project by offering a complementary perspective on the 

expression of AMR in different host populations exposed to shared environmental and 

dietary conditions. AGP samples were identified through the resource “A curated data 

resource of 214K metagenomes for characterization of the global antimicrobial 

resistome” (Martiny et al. 2022), which contains comprehensive information on 

metagenomic samples from a wide range of global studies. A main criterion for sample 

selection was the geographic overlap with the countries included in the EFFORT project 

to ensure consistency in regional representation. The selected human samples were 

downloaded from the European Nucleotide Archive (ENA) with the project accession 

number PRJEB11419, while corresponding metadata was obtained from NCBI National 

Library of Medicine. 

These samples were collected using BBL culture swabs (Becton, Dickinson and 

Company, Sparks, MD) and returned by mail. DNA extraction and sequencing followed 

the Earth Microbiome Project (EMP) protocols, with the V4 region of the 16S rRNA gene 

amplified using barcoded primers. Sequencing was performed on various Illumina 

platforms, using the updated 515f/806rB primer pair. Most sequencing was conducted 

on an Illumina MiSeq, with some batches processed on an Illumina HiSeq Rapid Run or 

High-Output platform. 

A total of 932 American Gut Project (AGP) human metagenomic samples were 

chosen considering two important criteria: geographic relevance and the presence of 

dietary metadata. Among them, 75 were antimicrobial resistant . The choice was limited 

to those samples submitted between 2017 and 2024 to maintain consistency in 

sequencing protocols and reduce possible biases related to temporal fluctuation in data 

collection. 

While the animal resistome data from the EFFORT project were not analysed in 

this study, the countries investigated in EFFORT informed the geographic sampling of 

AGP samples, in order to allow for a comparative description of AMR profiles within 

human and food-producing animal populations across the same geographic range. 

4.2. Sample Preprocessing and Quality Control 

In this study, raw sequencing data obtained from 932 human samples were 

subject to a rigorous preprocessing and quality control (QC) pipeline to ensure the 

reliability of downstream analyses.  
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4.2.1. Quality Control Pipeline 

To ensure the reliability of downstream analyses, raw sequencing data were 

subject to stringent quality control (QC), applying FoodQCpipeline v1. Specifically, this 

pipeline uses the bbduk2 adapter trimming and quality filtering application from the 

bbtools suite (Bushnell et al. 2017). 

As sequencing errors, contamination, and low-quality data all pose a threat to the 

integrity of ARG detection, stringent quality control is necessary for any project involving 

sequencing data. Low-quality sequences, adapter contamination, and the presence of 

non-target DNA can produce false-positive or false-negative results, compromising the 

reliability of AMR patterns. To obtain high-quality noise-free sequencing data, and retain 

only high confidence reads for the AMR gene identification, several QC measures were 

implemented: 

• Quality filter: Reads with low-quality bases, particularly at the ends of reads, 

were filtered out to improve downstream mapping accuracy. 

• Removal of low complexity sequences: Sequences that have less than a 

user-defined minimum number of nucleotides were removed from the analysis, as they 

do not provide enough context to be aligned or assembled. 

• Adapter trimming: Residual sequencing adapters were detected and removed 

to eliminate artificial sequence artifacts that may impact metagenomic analysis.  

4.2.3. Quality Control Parameters 

The following quality parameters were used during preprocessing to ensure the 

integrity of the human sequencing data: 

4.2.3.1 Phred Quality Score Cutoff 

Bases with a Phred score below 20 were trimmed from the right end of each read. 

This ensures that the bases that were left have a confidence level of at least 99%, 

reducing the sequencing errors in the data. This approach is a standard practice in 

sequencing projects, as it effectively balances data retention with quality (Rubin et al. 

2022). Studies have shown that trimming low-quality bases improves the accuracy of 

analyses (Overholt et al. 2019). 

4.2.3.2 Read Length Threshold 

After the trimming process, reads that had less than 50 base pairs were 

discarded. Short reads generally do not have sufficient information for reliable alignment 

or assembly, which can introduce noise into the dataset (Mukherjee et al. 2020). By 

setting this threshold, the dataset’s overall quality is maintained, ensuring that only 
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informative reads are retained for analysis. This step is widely adopted in metagenomic 

and genomic projects to improve dataset usability and reduce errors in downstream 

applications (Rajeev et al. 2023). 

4.2.3.3 Adapter Trimming 

To remove sequencing adapters, the pipeline employs bbduk2, which scans the 

reads using 19-base k-mers. At the ends of the reads, where adapter remnants are more 

likely and sequences are shorter, the tool switches to shorter k-mers, down to 11 bases, 

for better sensitivity. Additionally, overlapping regions in paired-end reads are used to 

enhance the accuracy of adapter trimming. This method minimizes the contamination 

from adapter sequences that can interfere with the analysis, a key step highlighted by 

several studies (Ochkalova et al. 2023). By removing such contamination, the integrity 

of the dataset is preserved. 

4.2.3.4 Contaminant Database 

The FoodQCpipeline used an internal database of known adapter sequences to 

identify and then remove contaminants. The use of curated databases for contamination 

removal is an essential step in this type of project, as pointed out in previous studies 

(Martin et al. 2018; Rubin et al. 2020). By using such a database, contaminants, including 

adapter sequences, were efficiently removed, ensuring that only high-quality, biologically 

relevant sequences were retained for analysis. 

4.2.4. Importance of Quality Control for Downstream Analysis 

The quality control process was crucial for ensuring the integrity of the raw 

sequencing data, which is foundational to all downstream analyses. By removing low-

quality reads, trimming adapter sequences, and filtering out contaminants, the QC 

pipeline enhanced the overall reliability of the dataset. This preprocessing ensured that 

the retained sequences were of high quality, enabling more accurate alignment, 

assembly, and variant calling. 

In the context of this study, where the aim was to characterize AMR patterns in 

human populations, maintaining high data quality was critical. Without robust quality 

control, the data could have been influenced by noise, which might have obscured 

important biological signals or introduced biases into the analysis. Although this study 

focused on human samples, ensuring consistency and high quality through a uniform 

QC process facilitates reliable comparisons across datasets, an essential aspect in 

research on AMR patterns across different regions and populations. Good quality control 
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also mitigates potential artifacts that could arise from sequencing errors or 

contamination. 

4.3. Antimicrobial Resistance Gene Cluster Identification 

4.3.1 Gene Identification Tools 

To detect ARGs in the metagenomic dataset, two primary tools were utilized: the 

PanRes Database and KMA (K-mer alignment). These tools were selected for their ability 

to efficiently and accurately identify AMR genes from large-scale datasets. 

The PanRes Database, developed in 2024, is a curated collection of resistance 

genes and their variants, providing comprehensive coverage of both well-known and 

emerging resistance mechanisms. 

KMA is a sequence alignment tool optimized for large-scale metagenomic data, 

using a k-mer-based approach to rapidly align short reads to reference databases such 

as PanRes. Its speed and accuracy made it the ideal choice for identifying AMR genes 

in this study. 

Detailed descriptions of both tools, including their functionality and role in this 

study, are provided in the subsequent sections. 

4.3.2. PanRes Database – What it is and how it was done 

The PanRes Database serves as a powerful resource for AMR gene 

identification, merging data from multiple existing resistance gene databases. It was 

developed for redundancy reduction and improved reference library utilization in 

metagenome analysis by collating vast resistance sequences in a computationally 

tractable format as a database.  

To develop PanRes, the authors assembled genes from several of the commonly 

used resistance gene databases, consisting of ResFinder, ResFinderFG, CARD, 

MegaRes, AMRFinderPlus, and ARGANNOT. These repositories offer unique features 

and resistance gene coverage across a diverse array of bacterial species and 

mechanisms. Besides these collections, PanRes employs a curated dataset of 

antimicrobial resistance genes derived from the CsabaPal collection (Daruka et al. 

2023), containing cloned and functionally validated ARGs from environmental and 

clinical samples. This integration was necessary to capture emerging ARGs, especially 

those conferring resistance to antibiotics that are not yet on the market.  

To improve computational efficiency and standardization, all unique sequences 

in the PanRes Database were assigned a "pan_" identifier (PanRes_genes). A related 

metadata table (PanRes_data) provides individual records of all genes, their source 
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database, and any corresponding high-identity gene clusters. For simplicity, gene 

clusters will be referred to as genes. This organized framework allows researchers to 

track the lineage of each gene while avoiding duplication of data. The clustering of 

sequences was carried out by an iterative process using Usearch (Edgar 2010) with a 

threshold of 90% identity and coverage to maintain stability and accuracy. 

PanRes was intended to create a more complete database than previous AMR 

repositories focused on metagenomes by combining information from several existing 

AMR databases. Though recently developed and not yet widely used, PanRes fills gaps 

in existing resources by including genes from various environments and ensuring 

adequate coverage of new resistance mechanisms. In this study, PanRes was used for 

the systematic and accurate screening of resistance genes in human metagenomes. 

4.3.3. KMA – What it is and why it is used 

KMA (K-mer Alignment) is a state-of-the-art sequence alignment software, which 

provides fast and detailed alignment of sequencing reads of short lengths, especially for 

large metagenomics projects. In contrast to conventional aligners that struggle with large 

and often redundant reference databases, KMA uses a k-mer based approach that 

allows for fast and accurate read alignment to highly similar or overlapping reads 

(Clausen et al. 2018). This feature is especially useful for mapping ARGs, which tend to 

have high redundancy due to multiple gene variants within large datasets. 

KMA was chosen for this study due to its efficiency in handling large and complex 

metagenomic datasets and its optimization to handle redundancy effectively, ensuring 

high-confidence detection of resistance genes across metagenomic samples (Clausen 

et al. 2018). KMA ensures high-confidence alignments by assessing matches based on 

k-mer identity and coverage, thus guaranteeing that only the most reliable gene 

identifications are included in subsequent analyses (Bloemen et al. 2023).  

At its core, KMA works by indexing reference databases with k-mers, that are 

short nucleotide sequences of length k. By aligning sequenced reads to these indexed 

k-mers, the tool significantly reduces computational load while maintaining high accuracy 

(Clausen et al. 2018). Additionally, KMA generates consensus sequences, allowing it to 

identify gene variants and mutations in the aligned sequences, which is particularly 

valuable for detecting AMR gene variations. This capability ensures a comprehensive 

identification of resistance genes across metagenomic samples (Clausen et al. 2018; 

Gand et al. 2024). By enabling a comprehensive and efficient exploration of AMR genes, 

KMA contributed significantly to the study’s scientific rigor. 
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4.3.4. Gene Identification Process 

After the raw data was filtered, the gene identification process was carried out 

using KMA (K-mer Alignment) against the PanRes Database. The objective of this step 

was to accurately identify antimicrobial resistance genes clusters from the processed 

metagenomic samples. Given the large-scale nature of the metagenomic datasets, the 

steps involved in this process were designed to ensure both the precision of gene 

identification and the comprehensiveness of the resulting data. 

4.3.4.1. Gene Identification and Count Compilation 

Each sample was aligned to the PanRes Database using KMA. This k-mer-based 

alignment approach was crucial for efficient mapping and identifying resistance genes 

by comparing metagenomic reads against a comprehensive collection of ARGs in the 

PanRes (Clausen et al. 2018; Herold et al. 2023).. The KMA results for each sample 

were compiled into a table that listed the counts of each detected AMR gene. These 

counts indicated the number of times that a specific resistance gene was found within 

each sample. To ensure accuracy, low-quality or ambiguous matches were excluded 

based on predefined alignment quality thresholds, allowing only high-confidence gene 

identifications to be retained for subsequent analysis (Rooney et al. 2022). 

4.3.4.2. Handling Replicates 

Results from replicated samples were combined to improve the consistency and 

reliability of the dataset. This step was particularly crucial when multiple samples were 

obtained from the same individual within the same timeframe. KMA’s output for each 

replicate was combined by summing gene counts for identical AMR genes across the 

replicates. This merging process ensured that the final table had only one representative 

result per individual per year, this way reducing the bias due to multiple sampling and 

offering a more accurate reflection of the gene abundance within each human sample 

(Clausen et al. 2018). 

4.3.4.3. Final Dataset Preparation 

The final dataset was a detailed and completed gene count table, with each row 

representing a unique individual and the columns indicating the identified resistance 

genes along with their respective counts. This dataset served as the basis for descriptive 

analyses aimed at characterizing the relative abundance of antimicrobial resistance 

(AMR) genes across various geographic regions and dietary habits. 
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4.4. Bacterial Composition Analysis 

Accurate bacterial composition assessment is a crucial part of metagenomic 

studies, especially in analysing antimicrobial resistance patterns. In this study, Kraken 

was used to classify bacterial taxa to interpret AMR gene patterns in the context of the 

general microbial community. 

4.4.1. Application of Kraken to Analyse Bacterial Composition 

Kraken was used to classify bacterial sequences across human samples dataset. 

Kraken uses a k-mer-based algorithm to assign taxonomic labels to metagenomic reads 

by mapping them onto a database of known microbial genomes. This k-mer-based use 

enables it to process massive datasets with a low loss in accuracy in the taxonomic 

classification (Wood et al. 2014). Kraken provided a comprehensive overview of bacterial 

composition for each sample by identifying bacterial species to the genus and species 

levels(Lu et al. 2017). 

4.4.2. Bacterial Composition Analysis 

The analysis was done to justify the normalization of samples in metagenomic 

studies. Variation of the bacterial load can introduce bias because samples may be 

sequenced to different depths. Employing statistical transformations, such as ALR, 

enables the gene abundance data to be appropriately normalized for changes in bacterial 

load between samples. ALR is useful for transforming compositional data by underlining 

a reference component. It serves to stabilize the variances among datasets (Martínez-

Álvaro et al. 2024; Yerke et al. 2024), allowing forvalid comparison among samples by 

reducing the distortions introduced due to differences in sequencing depth or microbial 

community composition (Gloor et al. 2017). 

4.4.3. Importance of Bacterial Counts Toward Analysis of AMR 

Analysis of bacterial composition is an indispensable element in the study of 

AMR, as resistance genes usually are associated with bacterial taxa. In this study, due 

to ALR normalization, the AMR gene patterns reflected resistance profiles, with minimum 

impact of variations in microbial composition(Franzosa et al. 2018). This process is 

critical when realizing an accurate comparison of the AMR profile across human 

populations in the first place (Ramos et al. 2024). Accurate knowledge of the bacterial 

counts in each sample was essential to ensure that the AMR gene profiles generated 

were representative of actual resistance patterns across different human populations, 

thereby minimizing bias and enhancing the reliability of the results. 
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4.5. Data Analysis and Characterization 

This study adopted a two-step strategy to analyse AMR in human metagenomic 

samples. It started with a descriptive analysis of the presence of resistance genes and 

then quantified them using the Additive Log Ratio (ALR) transformation. 

4.5.1. Descriptive Analysis of AMR Gene Presence 

The dataset contained 932 human metagenomic samples harvested from the 

American Gut Project (AGP) and collected from six European countries. Out of these, 75 

samples displayed antimicrobial resistance genes, which were established by 

metagenomic sequencing and the following identification pipelines. 

The distribution of the AMR-positive samples was assessed among different 

countries and people with different dietary habits. The presence of the resistance genes 

was investigated in terms of types of diet, such as red meat consumers, non-red meat 

consumers, vegetarians and vegans. This preliminary analysis made it possible to 

identify potential different AMR levels among people with various types of diet and from 

several European countries. 

4.5.2. Characterization of AMR Gene Abundance Using ALR Transformation 

The ALR-transformed resistance gene abundances were characterized to 

explore differences in AMR gene presence across countries and dietary groups. By 

applying the ALR transformation, the relative abundance of resistance genes was 

normalized, ensuring that comparisons between countries and types of diet were 

consistent despite variations in sequencing depth. ALR is widely used in metagenomic 

studies as it effectively handles compositional data by expressing each variable relative 

to a fixed denominator, making it particularly useful for comparing relative gene 

abundances across different sample groups (Gloor et al. 2017; Quinn et al. 2018). 

ALR values are often negative due to the mathematical properties of the 

transformation: when the numerator (AMR gene count) is lower than the denominator 

(bacterial gene count), the logarithmic ratio yields a value less than zero. The closer the 

value is to zero, the higher the relative abundance of that gene cluster is in relation to 

the bacterial background. On the contrary, more negative values indicate lower relative 

abundance. The descriptive analysis focused on identifying patterns in AMR gene 

presence, providing an overview of how resistance genes are distributed among different 

populations.  

This approach allowed for a comparative characterization of the human 

resistomes, highlighting potential patterns in resistance gene abundance across diverse 
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dietary habits and countries. While no statistical tests were applied due to the limited 

number of resistant samples, the use of ALR ensured that the relative abundance of AMR 

genes was appropriately normalized for compositional data, enabling a meaningful 

descriptive analysis (Martínez-Álvaro et al. 2024). These findings offer valuable insights 

into possible factors influencing AMR patterns in human populations, providing a 

foundation for future research with larger datasets. 

5. Results  

5.1. Descriptive Analysis of Samples 

5.1.1. Distribution of samples analysed per Country 

The dataset analysed in this study consists of 932 human metagenomic samples 

collected from nine European countries. As shown in Figure 1, Germany (DE) contributed 

the highest number of samples (n = 327), representing 35.1% of the total dataset, 

followed by Belgium (BE) with 154 samples (16.5%) and France (FR) with 151 samples 

(16.2%). Spain (ES), the Netherlands (NL), and Italy (IT) had moderate representation, 

with 86 (9.2%), 64 (6.9%), and 54 (5.8%) samples, respectively. Denmark (DK) and 

Poland (PL) contributed 34 (3.6%) and 51 (5.5%) samples, while Bulgaria (BG) had the 

lowest representation with 11 samples (1.2%). The variation in sample distribution across 

countries reflects differences in availability of sequencing data, introducing a sampling 

bias which should be considered when interpreting geographic patterns in antimicrobial 



21 
 

resistance. 

 

Figure 1. Distribution of human metagenomic samples analysed per country (n=932). 

5.1.2. Distribution of dietary habits 

Dietary groups include Red and Poultry Meat Consumption (RPMC, omnivorous 

diet), No Red Meat Consumption (NRMC), and No Meat Consumption (NMC, 

vegetarian/vegan). Regarding dietary habits the group that had most participants, 

according to Figure 2, was the RPMC diet (n = 738; 79.2%), indicating a strong 

predominance of omnivorous dietary patterns. NMC was observed in 110 individuals 

(11.8%), corresponding to vegetarian or vegan dietary choices, while 64 individuals 

(6.9%) adhered to a NRMC diet, meaning they consumed poultry and/or fish but avoided 

red meat. A small proportion of samples (n = 20; 2.1%) lacked dietary metadata and were 

categorized as Not Available (NA). The observed dietary distribution suggests that meat-

inclusive diets are dominant in the dataset, which may have implications for gut 

microbiota composition and the prevalence of antimicrobial resistance genes. 
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Figure 2. Distribution of analysed samples according to dietary habits (n=932) 

5.1.3. Proportion of Samples that present resistance per Country 

The proportion of antimicrobial resistance (AMR)-positive samples varied across 

the nine European countries included in this study. Figure 3 demonstrates that Poland 

(PL) exhibited the highest proportion of resistant samples, with 13.7% (n = 7/51) of its 

samples containing detectable AMR genes, followed closely by Italy (IT) at 11.1% (n = 

6/54) and France (FR) at 10.6% (n = 16/151). The Netherlands (NL) and Bulgaria (BG) 

also showed relatively high proportions of resistance, with 9.38% (n = 6/64) and 9.09% 

(n = 1/11), respectively. 

In contrast, Spain (ES) displayed the lowest proportion of AMR-positive samples, 

with only 1.16% (n = 1/86) containing detectable resistance genes, indicating a relatively 

low observed prevalence within this limited subset. Other countries, including Denmark 

(DK) at 5.88% (n = 2/34), Germany (DE) at 7.34% (n = 24/327), and Belgium (BE) at 

7.79% (n = 12/154), exhibited moderate levels of resistance. The limited number of 

samples in the dataset, along with the uneven representation across countries and diets, 

restricts the robustness of these results. 
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Figure 3. Proportion (%) of AMR-positive samples per country 

5.1.4. Proportion of Samples that present resistance per Type of Diet 

The proportion of antimicrobial resistance (AMR)-positive samples varied across 

different dietary groups, highlighting potential associations between dietary habits and 

the abundance of resistance genes. As demonstrated in Figure 4, the highest proportion 

of AMR-positive samples was observed in individuals following a Red and Poultry Meat 

Consumption (RPMC) diet, with 8.81% (n = 65/738) of samples displaying resistance 

genes. This was followed by individuals who adhered to a No Red Meat Consumption 

(NRMC) diet, where 7.81% (n = 5/64) of the samples contained AMR genes. 

In contrast, individuals categorized as No Meat Consumption (NMC), which 

includes vegetarians and vegans, exhibited a lower proportion of resistance, with only 

3.64% (n = 4/110) of samples testing positive for AMR genes. Despite RPMC individuals 

showing a higher proportion of AMR-positive samples, the limited sample sizes for 

NRMC and NMC groups prevent any definitive statistical conclusions about diet-specific 

AMR abundance. 
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Figure 4. Proportion (%) of AMR-positive samples by dietary type. 

5.1.5. Proportion of AMR-Positive Samples per Country and Type of Diet 

Following the separate assessments of resistance proportions by dietary group 

(Section 5.1.4) and by country (Section 5.1.3), this section explores the combined 

distribution of AMR-positive samples across both dimensions. This integrated view 

provides a more comprehensive perspective on the relative abundance of resistance in 

relation to dietary habits within specific national contexts.  

Figure 5 represents the Proportion of AMR-Positive Samples per Country and 

Diet and, demonstrates that among individuals following the Red and Poultry Meat 

Consumption (RPMC) diet, the highest proportions of AMR-positive samples were 

observed in France (9.9%) and Poland (9.8%), followed by Bulgaria (9.1%), the 

Netherlands (7.8%), Belgium (7.8%), and Italy (7.4%). In contrast, Spain and Denmark 

exhibited lower proportions within this group, with 1.2% and 5.9%, respectively. 

In the alternative dietary groups, No Red Meat Consumption (NRMC) and No 

Meat Consumption (NMC), the proportions of AMR-positive samples were generally 

lower. For instance, in Germany, while 6.1% of RPMC samples were AMR-positive, only 

0.9% were observed among NMC individuals. Similarly, NRMC-associated proportions 

were 3.7% in Italy, 3.9% in Poland, and 1.6% in the Netherlands. NMC-positive samples 

were rarely observed, such as in France, where only 0.7% of the total were linked to this 

group. 

This analysis allows for the identification of proportional patterns of resistance 

when considering both dietary habits and geographical distribution. However, due to the 

small number of AMR-positive samples in many categories, particularly among non-
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RPMC diets and in countries with lower sampling, the interpretation remains purely 

descriptive and does not allow for inferential conclusions. 

 

Figure 5. Proportion of AMR-Positive Samples per Country and Type of Diet 

5.2. Identification of Antimicrobial Resistance Genes clusters 

5.2.1. AMR gene cluster counts per Country 

After evaluating sample-level resistance distributions, we identified antimicrobial 

resistance gene clusters, revealing differences in resistance patterns among countries 

representing the results in Figure 6. 

The distribution of ARGs across countries reveals substantial variations in 

resistance gene abundance and diversity. Germany exhibited the highest total number 

of detected AMR genes (n = 3502), followed by France (n = 2670) and Belgium (n = 923). 

In contrast, Denmark and the Netherlands presented lower AMR gene diversity, with 569 

and 274 genes detected, respectively. Due to unequal sample sizes across countries, 

the total AMR gene counts may be influenced by both sampling depth and underlying 

geographic factors. Therefore, the results should be interpreted as descriptive rather 

than comparative. 
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Figure 6. Total number of antimicrobial resistance gene clusters detected per country (>=5 

genes). 

5.2.2 Resistance genes variation across Types of Diet 

Next, we explored gene distribution across dietary habits. Results should be 

cautiously interpreted due to the disproportional representation of types of diet in the 

dataset. 

To examine differences in resistance gene diversity across dietary habits, the total 

number of distinct antimicrobial resistance genes detected in each group was calculated 

and presented in Figure 7. Individuals following a Red and Poultry Meat Consumption 

(RPMC) diet presented the highest diversity, with 7,372 resistance gene detections. This 

was followed by the NRMC and NMC groups, with 603 and 450 gene detections, 

respectively. The group without dietary information (NA) showed the lowest diversity (n 

= 305). 

These values reflect the cumulative number of gene detections across individuals 

within each dietary group and do not indicate the number of exclusive genes of this 

groups. Due to the unequal number of individuals per group, these results are presented 

descriptively and should be interpreted with caution. 
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Figure 7. Total number of antimicrobial resistance gene clusters detected per type of diet. 

5.2.3. AMR gene counts per Country and Type of Diet 

The distribution of antimicrobial resistance (AMR) genes across countries and 

dietary groups revealed considerable variability in the number of resistance genes 

detected per group. Figure 8 represents the number of antimicrobial resistance genes 

that were identified per Country and Type of Diet showing that Germany presented the 

highest overall number of AMR genes (3,502), followed by France (2,670) and Belgium 

(923). In contrast, countries such as Denmark (569), the Netherlands (274), and others 

with lower sample sizes exhibited lower total counts of detected resistance genes. 

Across all countries, individuals classified within the Red and Poultry Meat 

Consumption (RPMC) group accounted for most detected AMR genes. For instance, in 

Germany, 2,916 out of 3,502 genes were associated with RPMC individuals, while in 

France and Belgium, this group accounted for 2,501 and 923 genes, respectively. In 

Denmark and the Netherlands, all detections were likewise attributed to the RPMC 

group. Although these counts suggest a higher detection of AMR genes in RPMC 

individuals, it is important to note that this group also comprised the largest number of 

samples across countries, which may have contributed to the observed differences. 

Resistance genes were also detected in other dietary groups. In Germany, 281 

AMR genes were identified in individuals classified as No Meat Consumption (NMC), 

and 169 in France within the same group. NRMC individuals accounted for detections in 

the Netherlands and Poland (5 and 597 genes, respectively). These findings support the 

presence of resistance genes in individuals with diverse dietary profiles. 

Overall, AMR gene detections occurred in all countries and across all dietary 

classifications. However, given the unequal number of samples per group and country, 
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the interpretation of these results remains descriptive. Further studies with balanced 

sampling and additional covariates would be necessary to explore the potential 

contribution of dietary patterns or geographical context to the human resistome. 

 

Figure 8. Number of antimicrobial resistance genes identified per Country and Type of Diet. 

5.2.4. Distribution of antimicrobial resistance classes across countries and 

Types of Diet 

Resistance genes associated with 19 antibiotic classes were identified across all 

analysed countries and dietary groups, reflecting their widespread presence in the 

human gut microbiome. The number and diversity of resistance classes were consistent 

across countries and diets, with no notable differences observed between groups. 

When analysed by dietary habits, all groups, Red and Poultry Meat Consumption 

(RPMC), No Red Meat Consumption (NRMC), and No Meat Consumption (NMC), 

exhibited resistance genes belonging to all 19 antibiotic classes. Similarly, all countries 

included in the analysis showed the same class-level diversity, further supporting the 

broad dissemination of AMR genes regardless of geography or diet. 

This uniformity was also observed when analysing country and diet jointly, with 

all combinations displaying resistance genes from the full range of antibiotic classes 

considered in this study. These results reinforce the notion that resistance gene diversity 

at the class level is widespread and not exclusively shaped by dietary or geographical 

factors. 

5.3. Relative Abundance of Resistance Gene Clusters 

 
While the previous sections focused on the detection and distribution of AMR 

genes based on their presence and count across countries and dietary groups, these 

measures do not consider the microbial context in which such genes occur. To address 
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this, we applied an additive log-ratio (ALR) transformation to assess the relative 

abundance of resistance gene clusters, normalizing gene counts in relation to bacterial 

composition within each sample. 

This approach enables a more standardized comparison of AMR gene 

abundance across samples, accounting for differences in microbial load and sequencing 

depth. The following sections explore the distribution of AMR gene relative abundance 

across dietary patterns and geographical locations, aiming to identify compositional 

patterns in the human resistome beyond raw detection counts. 

5.3.1. Bacterial Diversity Across Samples 

To contextualize the abundance of antimicrobial resistance (AMR) genes, we 

performed taxonomic classification of the gut microbiome using Kraken, based on 

bacterial DNA sequences. Figure 9 illustrates an overview of the bacterial taxa detected 

across all samples, highlighting the complexity of the microbial community structure 

within the studied population. 

Although this taxonomic profile offers a broad visual representation of microbial 

diversity, it was not directly used in the analysis of AMR gene abundance. The 

normalization applied through additive log-ratio (ALR) transformation was based on total 

bacterial counts, independent of taxonomic classification.  

As such, Figure 9 is presented for illustrative purposes only, considering the full 

dataset, and no interpretations regarding differences in microbiome composition across 

countries or dietary groups were explored. 
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Figure 9. Taxonomic distribution of bacteria identified from human microbiome samples, 

classified with Kraken and visualized using a Krona chart. Each ring represents a different 

taxonomic level (from phylum down to genus/species), and the size of each sector 

indicates the relative abundance of that bacterial group. 

 

5.3.2. AMR abundance across Types of Diet 

As shown in Figure 10, the relative abundance of AMR genes varied across 

dietary groups, with the highest abundance observed in individuals following a Red and 

Poultry Meat Consumption (RPMC) diet (-10.8 ALR), followed closely by those adhering 

to a No Meat Consumption (NMC) diet (-10.9 ALR). No Red Meat Consumption (NRMC) 

individuals exhibited the lowest relative abundance (-11.2 ALR). 

Less negative ALR values indicate higher relative abundance of resistance 

genes, while more negative values suggest lower abundance in proportion to bacterial 

counts. Despite these observed variations, the narrow range of ALR values across 
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dietary groups suggests that factors beyond diet are also likely influential in shaping 

observed resistance gene abundances. Although ALR-transformed AMR abundances 

varied slightly across diet groups, the narrow ALR range and small number of samples 

limit drawing definitive conclusions from these observations. 

 

Figure 10. Relative abundance of antimicrobial resistance genes by dietary type  

5.3.3. Country-wise variation in AMR abundance 

Figure 11 shows the mean ALR values for each country, calculated from AMR-

positive samples only. Among the countries analysed, Germany (-10.71), Denmark (-

10.36), Belgium (-10.64), and the Netherlands (-10.42) exhibited relatively higher ALR 

values compared to countries such as France (-11.16), Poland (-11.49), Italy (-17.49), 

Bulgaria (-18.03), and Spain (-18.06). However, due to the limited and unequal number 

of AMR-positive samples per country (ranging from n = 1 to n = 24), these descriptive 

differences should be interpreted with caution. 

These findings illustrate that, even after normalization for bacterial load, the 

relative abundance of AMR genes varies across countries. Yet, no statistical testing was 

applied, and further investigation with larger, balanced sample sizes would be necessary 

to assess whether such differences reflect broader geographical patterns or are 

influenced by sample-level variability. 
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Figure 11. Relative abundance of antimicrobial resistance genes by country 

5.3.4. Relative abundance across Country and Type of Diet 

Figure 12 presents the relative abundance of antimicrobial resistance (AMR) 

genes across countries and dietary groups, based on ALR-transformed values. Each bar 

represents the average ALR for individuals classified as AMR-positive within a specific 

country and dietary category. 

Across most countries, individuals classified under the Red and Poultry Meat 

Consumption (RPMC) group presented higher ALR values (i.e., less negative), 

compared to other diet types. In Germany and France, for example, the RPMC group 

exhibited a higher ALR than both the No Meat Consumption (NMC) group. The 

Netherlands showed the most distinct difference between dietary groups, with the RPMC 

group presenting a higher ALR compared to NRMC. Italy showed a similar, but less 

pronounced patterns. In Poland, in contrast, ALR values for NRMC were lower than those 

for RPMC.  

Not all countries had representation across all dietary categories. For example, 

only RPMC individuals were present among AMR-positive samples in Belgium, Bulgaria, 

Denmark and Spain. The number of samples within each group varied substantially, with 

some combinations represented by only one or two individuals. This limits the 

interpretability of the differences and highlights the descriptive nature of these results. 
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Figure 12. Relative abundance of antimicrobial resistance genes by country and dietary 

type. 

5.4 Relative Abundance in the Antibiotic Classes 

5.4.1. Relative Abundance per Antibiotic class 

Lastly, the relative abundance of AMR genes by antibiotic classes revealed 

consistent distribution patterns across diets and countries; however, due to sample size 

limitations, these findings should remain strictly descriptive. 

Figure 13 presents the ALR-transformed mean relative abundance of AMR gene 

clusters across all antibiotic classes detected in the dataset. The values represent the 

average proportional abundance of gene clusters associated with each class, normalized 

by bacterial load. 

The class beta-Lactam exhibited the highest relative abundance, with an ALR of 

-12.3, followed by "Other" (-12.4) and Tetracyclines (-13.2). Several other classes also 

presented relatively high ALR values, including Quinolones (-13.4), Polymyxins (-13.7), 

and glycopeptides (-13.7).  

Conversely, lower relative abundance values were observed for classes such as 

Pseudomonic acids (-17.3), Streptogramins (-16.6), Pleuromutilins (-16.9), and 

Phosphonic acid derivatives (-16.6). These classes showed the most negative ALR 

values among the group, indicating lower proportional abundance across the analysed 

samples. 

Overall, ALR values ranged from -12.3 to -17.3 across the 19 antibiotic classes 

included in the analysis. These results describe the distribution of resistance gene 
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clusters in the studied human microbiomes at the antibiotic class level, based on relative 

abundance normalized to bacterial load and gene length. 

 
Figure 13. Relative abundance of AMR genes per antibiotic class (ALR-transformed). 

5.4.2. Relative Abundance per Antibiotic Class per Type of Diet 

Figure 14 presents the ALR-transformed relative abundance of antimicrobial 

resistance genes across five antibiotic classes, stratified by dietary group. Each bar 

represents the mean ALR value among AMR-positive individuals in each diet category. 

Across all diet groups, beta-lactam (ACCP) resistance genes consistently 

showed the highest relative abundance, with ALR values ranging from -12.8 in the No 

Red Meat Consumption (NRMC) group to -12.3 in the Red and Poultry Meat 

Consumption (RPMC) group. Quinolone resistance genes have a slightly higher relative 

abundance observed in the NMC group compared to the other dietary categories. 

Tetracycline resistance genes showed the second highest relative abundance in 

the RPMC group, with ALR values differing between meat consumers and non-

consumers. The remaining classes, glycopeptides and lipoglycopeptides and 

polymyxins, showed relatively similar ALR values across all diet types, with variation 

remaining within a narrow range (approximately -13.6 to -14.3). 

It is important to note that the number of AMR-positive resistomes per dietary 

category varied substantially, with the RPMC group comprising most samples. The NA 

group was represented by only one individual, and the NMC and NRMC groups included 

three and four individuals, respectively. As such, these results are presented 

descriptively and should be interpreted with caution. 
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Figure 14. Relative abundance of AMR genes per antibiotic class (ALR-transformed) per 

Type of Diet 
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6. Discussion 

This study aimed to characterize antimicrobial resistance (AMR) gene distribution 

across European human gut microbiomes, highlighting potential variations associated 

with dietary habits and geographical origin. Given the descriptive nature and sample size 

constraints, findings remain indicative, providing a comparative basis aligned with 

existing scientific literature. 

The results indicate possible geographic and diet differences in AMR gene 

abundance. Participants with omnivorous diets (RPMC) seemed to carry relatively more 

AMR genes than those with vegetarian/vegan (NMC) or low meat diets (NRMC). 

Geographic variation in AMR gene relative abundance was observed. Countries such as 

Denmark, Germany, Belgium, and the Netherlands showed higher relative abundance 

when compared to Italy, Bulgaria and Spain that presented lower relative values.  

Countries variations in the abundance of AMR may reflect country-level policies 

on antibiotic use, agricultural practices, and antibiotic stewardship in health care. 

According to the ESAC-Net report (ECDC, 2024), Germany, Belgium, and France have 

historically had more antibiotic use, particularly of beta-lactams and tetracyclines, 

compared to Denmark and the Netherlands, which have more restrictive policies of 

antibiotic use (ECDC, 2024).These patterns do not fully align with reported antibiotic use 

profiles. For example, both the Netherlands and Denmark maintain restrictive national 

antibiotic policies yet displayed relatively high AMR gene abundance in our dataset. 

However, the small number of AMR-positive samples and the uneven distribution of 

samples across countries limit the interpretability of these findings, as some of the 

observed differences may reflect sampling bias rather than true population-level 

variation. 

Moreover, resistome composition is likely influenced by additional factors beyond 

national antibiotic consumption, including sample size and data structure (Gloor et al. 

2017), individual antibiotic exposure (Aslam et al. 2021), environmental contact with 

resistant bacteria (Berendonk et al. 2015), dietary effects on the gut microbiome  (David 

et al. 2014), and exposure to animal products or intensive production systems (Munk et 

al. 2018). 

Our findings agree with existing evidence indicating likely dietary determinants of 

AMR exposure. Research indicates how meat-inclusive diets are associated with higher 

presence of AMR genes, that might be related to the presence of residual antibiotics and 

antibiotic-resistant bacteria commonly found in intensive livestock production systems, 

where antibiotics have historically been used for both prophylactic and therapeutic 
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purposes (Weinroth et al. 2022b; Fernández-Trapote et al. 2024). Analysis further 

revealed that the relative abundance of tetracycline resistance genes was higher among 

participants adhering to meat-inclusive diets (RPMC) versus vegetarian/vegan diets 

(NMC). The distinction is consistent with accounts of widespread tetracycline use in 

animal production, where the drug is extensively used for therapy and prophylaxis (Odey 

et al. 2024).The high occurrence of beta-lactam and tetracycline resistance genes may 

be mirrored to their extensive use in clinical medicine, veterinary medicine, and 

agriculture across Europe. European Food Safety Authority reports reveal that beta-

lactams and tetracyclines are the most used ABs, with constant detection of their 

resistance genes in the environment and human microbiomes (ECDC 2022; EFSA 

2024). The occurrence of these resistance determinants in human gut metagenomes 

illustrates the linked nature of human, animal, and environmental AMR reservoirs and 

strengthens the case for inclusive AMR surveillance under the One Health paradigm (van 

Schaik 2015; Munk et al. 2018). The correlation between diet and gut microbiome 

bacterial composition offers a reasonable explanation for differences in AMR abundance 

between diet groups (Wu et al. 2011). 

Plant-based diets such as vegetarian or vegan have been previously associated 

with lower carriage of antimicrobial resistance (AMR) genes and greater microbial 

richness, potentially due to reduced exposure to antibiotic residues and higher intake of 

dietary fibre (David et al. 2014; Conlon and Bird 2015). In contrast, diets including red 

and poultry meat have been linked to increased AMR gene presence (Weinroth et al. 

2022b). Although our study did not evaluate bacterial composition or diversity between 

dietary groups, the observed relative abundance of AMR genes was numerically lower 

in individuals following plant-based or restricted-meat diets. These findings may align 

with previously reported associations but given the limited number of AMR-positive 

samples in non-meat diet groups and the lack of taxonomic profiling in our analysis, these 

observations must be interpreted with caution. 

Due to the low number of AMR-positive samples per dietary group, it was not 

possible to investigate associations between bacterial diversity and resistome 

composition. The percentage of AMR-positive samples in the dataset was limited, and 

as such, the current observations are best interpreted as exploratory. These descriptive 

patterns should be validated in future studies with larger and more balanced sample 

sizes. Additional functional metagenomic studies are necessary to ascertain if the 

detected resistance genes are being actively expressed and thus confer functional 
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relevance beyond their mere presence in the microbiome as part of the resistome 

(Berendonk et al. 2015) 

Major limitations of this study include the low number of AMR-positive samples, 

which limits the power and generalizability of the results, as well as the opportunity to 

perform statistical testing. Uneven sampling between nations and diet groups offers 

prospective biases, compromising representativeness and possibly affecting observed 

patterns of AMR distribution. American Gut Project metadata lack information about 

antibiotic use, socioeconomic status, and access to healthcare, and these unmeasured 

factors could moderate or account for the reported AMR patterns. Not testing hypotheses 

statistically limits interpretative inferences, making our findings exploratory instead of 

confirmatory. Additionally, dietary metadata in open data can be coarse-grained, since 

self-reported diets do not capture heterogeneity in food sourcing, processing, or cooking, 

which can also influence AMR gene acquisition. With these limitations in mind, all 

interpretations must be considered preliminary, as a basis for informing future, more 

granular research. Follow-up studies should involve larger, more balanced datasets to 

enhance statistical power and generalizability. Longitudinal studies incorporating 

detailed environmental, dietary, and medical histories could provide a more integrated 

view of the complex interactions affecting the human resistome. 

Nevertheless, the observed possible connection between diet and the abundance 

of AMR in the human gut microbiome suggests pressing opportunities for food and public 

health policy measures. 

Interdisciplinary human, animal, and environmental One Health AMR surveillance 

remains central to study and control the transmission of resistance along food chains 

(Queenan et al. 2016; Munk et al. 2018). Recent efforts further illustrate the utility of 

metagenomic frameworks to uncover such links (Fernández-Trapote et al. 2024). 
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7. Conclusion 

The objective of this research was to describe the pattern of antimicrobial 

resistance (AMR) genes in European human gut microbiota and determine potential 

differences related to diet and geographical location. Despite some observed patterns, 

these findings are constrained by the limited sample size, uneven sampling among 

dietary groups and nations, and lack of statistical analysis, restricting the possibilities for 

inferential conclusions. Utilization of publicly available metagenomic data sets can also 

introduce uncontrollable biases, with influence on resistome composition. 

Nevertheless, these findings indicate diet as a possible determinant of AMR 

transmission and highlight the necessity for more extensive AMR surveillance, possibly 

considering eating habits. Comprehensive AMR surveillance can be addressed only by 

an extensive, multidisciplinary strategy under the One Health paradigm, combining 

human, animal, and environmental data and taking into account agricultural antibiotic 

stewardship and food safety regulation.  

To build on these findings, longitudinal studies involving more equitable 

recruitment of participants and incorporating comprehensive dietary, medical, and 

environmental histories are necessary. In this way, greater insight into the multifaceted 

interrelationships between the gut microbiome diversity and resistance profiles will be 

gained to inform evidence-based interventions to mitigate AMR. 
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