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The mitochondrial genomes of 
Iberian freshwater and diadromous 
fishes
Joana Veríssimo et al.#

The Iberian Peninsula, in southwestern Europe, is home to a distinctive freshwater fish 
fauna, predominantly composed of endemic species. This is a consequence of the prolonged 
isolation from western Europe caused by the Pyrenees, the diverse geological and climatic 
gradients, and the isolation of river basins. Freshwater and diadromous fishes have 
diversified in the Iberian Peninsula and include 72 currently recognized native species, 50 of 
which are endemic to the region. Habitat loss and degradation, the introduction of invasive 
species, and climate change have placed Iberian freshwater and diadromous fishes among the 
most threatened groups of vertebrates, with some species on the brink of extinction. Here, 
we present 60 new complete mitochondrial genome assemblies out of the 109 freshwater 
and diadromous fish species found in the Iberian Peninsula, including the mitogenomes of 
37 endemics. These resources are crucial for characterising the mitochondrial evolution of 
species, reconstructing phylogeny and paleogeography, advancing species identification, 
delineation, and monitoring, and ultimately supporting conservation planning.

Background & Summary
Vertebrate mitochondrial genomes (or mitogenomes) represent the maternal evolutionary lineages, and their 
gene content and order are generally highly conserved across taxa1. They evolve at a relatively constant rate, 
making whole mitogenome sequences valuable for understanding evolutionary and demographic histories, phy-
logenetic relationships, and divergence times of non-model species2. Whole mitochondrial genome information 
can also be employed to inform phylogeography and conservation genetics (e.g.3). The analysis of sequence vari-
ation in mitogenomes allows for the distinction of lineages, populations, evolutionarily significant units, cryptic 
species, and the drivers of speciation. This, in turn, facilitates the identification of priority areas for conservation 
and the design of strategies to maintain genetic diversity and resilience in natural populations. Furthermore, 
mitochondrial genomes can provide environmental plasticity, thus allowing for species adaptation and coloni-
zation into new habitats4,5.

Mitochondrial sequences are commonly used as molecular markers for species identification, referred to as 
molecular barcodes, which are especially useful when morphological identification is challenging or ambigu-
ous6. These reference sequences are increasingly important for metagenomics and metabarcoding studies that 
aim to identify multiple taxa from a mixture of DNA samples. For example, they can be used for assessing biodi-
versity from DNA present in the environment, such as air, water or soil samples (e.g.7–9) or identifying prey items 
in gut or scat samples10–12. To ensure successful and accurate identification, it is crucial to have curated reference 
sequence databases that cover the diversity of the target taxa for these non-invasive methodologies. Therefore, 
genomic resources, such as whole mitogenomes, of non-model species are highly important.

The Iberian Peninsula, situated in southwestern Europe, is home to a variety of freshwater ecosystems, 
including rivers, streams, lakes, and wetlands13. Since the rise of the Pyrenees, approximately 100–150 million 
years ago, the region has been isolated from the rest of Europe, which has resulted in the evolution of unique spe-
cies14. The region’s diverse topography and climate, in conjunction with the isolation of river basins, functioned 
as natural barriers to fish dispersal and gene flow, thereby contributing to further speciation events15. The com-
bined effects of isolation and selective pressures have promoted species diversity and high levels of endemism, 
resulting in several species being restricted to specific Iberian river ecosystems or basins15–17.
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The Iberian freshwaters have suffered significant degradation due to various pressures, including alterations 
caused by dams and other infrastructures (e.g. channels and weirs), pollution, eutrophication, biological inva-
sions, and water over-extraction18. Coupled with the ongoing aridification of the Peninsula, this has led to the 
decline of most freshwater taxa, including fishes17,19. The genomic resources generated here provide more accu-
rate species identification and assist the use of molecular tools, such as eDNA, for more efficient systematic 
monitoring. This enables a more comprehensive understanding of population trends and the assessment of 
conservation status, thereby informing conservation management and policies20.

Although some species already have publicly available mitogenome sequences, these reflect only 43% of 
the total number of species occurring in Iberia, including both native and non-native species. Moreover, there 
was a pronounced bias towards non-native species, with only 15% of the native Iberian species having a public 
mitogenome assembly.

This study presents new reference mitogenomes for 60 (55%) of all 109 freshwater and diadromous fish spe-
cies known to occur in the Iberian Peninsula, in addition to the 35 already publicly available. Of the new mitog-
enomes, 50 are from native Iberian species, which, when combined with the 10 already published, represent 
83% of the total native freshwater fish fauna (72 species in total). These mitogenomes represent a fundamental 
resource for future research in phylogenetics, phylogeography and population genetics. Furthermore, the data 
will facilitate the development of PCR primers and probes for environmental DNA surveys and species monitor-
ing, as well as molecular identification from predator diets and other metabarcoding studies.

Methods
DNA extraction, library construction, and sequencing.  Total genomic DNA was extracted from fin 
clips with the QIAmp DNA Micro kit (QIAGEN) following the manufacturer’s protocol. Vouchered specimens 
are available to a subset of samples (Species21). DNA quantity was assessed with a Qubit fluorometer with the 
dsDNA BR Assay Kit (Thermo Fisher Scientific, USA). Illumina libraries were constructed using two different 
methodologies (Metrics21). Samples from subset A were sheared to an average size of 350 bps using Bioruptor 
Pico (Diagenode, USA), and Illumina’s TruSeq Nano kit was used to construct libraries. These were quantified 
using qPCR (Kapa Library Quantification Kits compatible with Illumina platforms) and pooled equimolar to 
be sequenced, targeting at least 2 Gbps per sample. Libraries were sequenced with 150 bps (PE) on an Illumina 
platform (Novaseq and HiseqX). Samples from subset B were sent for shotgun sequencing at the Norwegian 
Sequencing Centre, Oslo, Norway. Library preparation followed the Illumina DNA Prep Tagmentation Kit 
(Illumina, San Diego, California, USA). Samples were sequenced by producing 150 bp paired-end reads with an 
expected depth of 20x per sample obtained by two runs using a quarter of a flow-cell of the Illumina NovaSeq S4 
platform (expected throughput of 800 Gbp each) and a partial run of the same platform (100 Gbp).

Mitochondrial genome assembly and annotation.  Read quality was evaluated with FastQC (https://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and adapters were removed and quality trimmed with 
Trimmomatic v0.3922 with the following parameters, LEADING:3 TRAILING:15 SLIDINGWINDOW:4:15 
MINLEN = 30. Mitochondrial genomes were assembled using NOVOPlasty v4.3.123, and if a circular assembly 
could not be obtained, GetOrganelle v1.7.6.124 was used. Protein-coding genes and tRNAs were annotated for 
all mitogenomes using MITOS2 v2.0.825 and tRNAscan-SE v2.0.926, respectively (Annotations_Mitogenomes21). 
MITOS2 was run with default parameters except for evalue = 15, fragovl = 0, finovl = 10, and using refseq89 m as 
reference. Publicly available mitogenomes of Iberian freshwater species were retrieved from NCBI and included 

Family Species Size GC % Coverage

Atherinidae 1 16725 49.4 1460

Blenniidae 1 16505 45.67 376

Centrarchidae 1 16503 47.44 578

Cichlidae 1 16556 45.43 321

Clupeidae 1 16699 47.26 183

Cobitidae 6 16568.3 ± 1 42.59 ± 0.3 114.9 ± 102

Cottidae 1 16517 46.67 33

Cyprinidae 8 16604.4 ± 13 44.02 ± 0.7 332.1 ± 669

Gobionidae 2 16606.5 ± 0.7 43.98 ± 0.2 169 ± 141.4

Leuciscidae 28 16657.4 ± 198.2 44.97 ± 0.5 377.1 ± 512

Mugilidae 2 16798.5 ± 142.1 46.01 ± 0.8 315 ± 391

Petromyzontidae 5 16185.6 ± 35.1 38.62 ± 0.04 1043.66 ± 1029.6

Pleuronectidae 1 16077 46.89 580.9

Salmonidae 1 16656 45.58 26

Siluridae 1 16524 44.87 742.2

Table 1.  Summary information of the new mitogenomes presented in this study. For each family, we provide 
the number of species sequenced, the mean and standard deviation (mean ± sd) of the mitogenome size (Size), 
the percentage of GC content (GC), and the mean and standard deviation (mean ± sd) of the sequence coverage 
(Cov). Families represented by only one individual are shown with the corresponding value.
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for further analysis. Mitogenomes were aligned at the order level using the MAFFT version implemented in 
Geneious Pro v.10.2.6 under default settings to confirm annotations27.

Mitogenome phylogeny.  All mitochondrial protein-coding genes (PCGs) and both ribosomal regions 
from all species were extracted and realigned with MAFFT v7.45327. Alignments for each region were filtered 
and trimmed using Gblocks v0.91b28 and then concatenated into a single dataset. Phylogenetic analyses were 
performed with IQ-TREE229, with the appropriate evolutionary model inferred for each gene, using 10,000 
bootstraps to confirm the phylogenetic relationship between species. We used the individuals from the family 
Petromyzontidae as outgroup (Petromyzon marinus: PMU11880; Lampetra alavariensis: MT34; Lampetra aure-
mensis: Aur19-OL-20; Lampetra fluviatilis: 9505; Lampetra lusitanica: MT32; Lampetra planeri: Plan19-long9). 
This analysis was performed using the gene2phylo wrapper30.

Data Records
The reference data for this collection includes the following information: (1) Sample Code; (2) Species; (3) geo-
referenced data (latitude and longitude in decimal degrees) for each specimen; (4) sampling date; (5) mitoge-
nome for each specimen; (6) existence of voucher for each specimen; (7) SRR accession code; and (8) assembled 
mitogenome NCBI accession code. The raw reads sequencing outputs were deposited at the NCBI Sequence 
Read Archive under SRP511741 (2024)31 and SRP433534 (2023)32. The assembled mitogenomes and annotations 
were deposited in NCBI (PP928724-PP928783) under BioProject PRJNA119205733. Cytochrome oxidase I (COI) 
gene sequences were deposited in BOLD (Ref: IBFIS). All data associated with this study is hosted at Figshare21.

Technical Validation
All specimens were identified by experts and further validated based on COI and/or Cytochrome b (Cyt b) 
queried against the BOLD and NCBI databases, respectively. An identification was deemed correct if the per-
centage of identity was higher than 99%. The mean coverage of each mitogenome was 407 reads per base, with 
the lowest coverage observed in Luciobarbus microcephalus at 15 and the highest in Lampetra fluviatilis at 2622. 
Except for the lampreys and Alosa fallax, all 13 PCGs, 2 rRNAs, and tRNAs were automatically annotated using 
the previously mentioned software. The publicly available annotated mitogenomes were used as references for 
the species in which the annotation failed, and gene positions were compared (Alosa alosa: NC_009575, and 
Lampetra fluviatilis: Y18683).

The mean mitogenome sequence length varies across families, between 16,077 bps (Pleuronectidae) and 
16,798 bps (Mugilidae). The average GC content in our dataset is 44.3%, with variability between families. The 
lowest average GC content is observed in Petromyzontidae (38.4%), while the highest is observed in Atherinidae 
(49.4%), which is similar to other fish species (Table 134). Despite some variance in PCGs lengths across the 
dataset, their sizes are comparable to those belonging to closely related species. Thus, the observed differences 
in mitochondrial genome length are mostly attributed to variation in intergenic regions (Table 2). The majority 
of species exhibits a gene order analogous to that observed in most vertebrates, whereas the Petromyzontidae 
displays its characteristic gene order, with the control region located between the ND6 and Cyt b (Fig. 1)35. The 
maximum likelihood tree reconstructed with IQ-TREE used the model GTR for the combined gene set (13 
PCG + 2 rRNAs). The Petromyzontidae family was selected as the outgroup, as it is recognised to be a more basal 
clade36. All genera represented by multiple species form monophyletic groups within each family (Fig. 2), and 
the same was found for higher taxonomic levels, such as family and order.

Although some mitochondrial genomes remain to be sequenced for a few species, further research is ongoing 
to address this knowledge gap. For example, Anaecypris hispanica, which is endemic to the region, is included 
in the ERGA (European Reference Genome Atlas) project (www.erga-biodiversity.eu). The remaining species 

Mitochondrial Region Min Max

12S rRNA 901 958

16S rRNA 1615 1716

ATP6 678 683

ATP8 164 167

NAD1 965 986

NAD2 1041 1053

NAD3 348 350

NAD4 1376 1385

NAD4L 290 296

NAD5 1796 1847

NAD6 518 521

CYT b 1136 1190

COX1 1547 1595

COX2 689 690

COX3 783 785

Table 2.  Summary information on the minimum (Min) and maximum (Max) length of annotated 
mitochondrial regions across the sequenced mitogenomes.
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Fig. 1  Representation of the mitochondrial arrangement found in species belonging to the class Actinopteri 
(a) and the rearrangement typical of Petromyzontida (b). The purple shaded box highlights the rearrangement 
region. CR corresponds to Control Region and all tRNA coding genes are represented by the one-letter code for 
the corresponding amino acid.
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Fig. 2  Maximum likelihood tree constructed using IQ-TREE2 with mitogenomes of 95 (87%) fishes occurring 
in the freshwaters of the Iberian Peninsula mainland. Genera in green represent native groups, while blue 
represents non-native groups. Collapsed genera with * include species with both statuses and are coloured 
according to a majority rule. Bold names represent groups with new mitogenomes. Node bootstrap values are 
shown as follows: black circles: >99%; dark-grey: 95%-99%; blue: 75%-95%; white: 60–75%. Nodes below 60% 
are not shown.
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still lacking mitochondrial genomes belong to genera for which new data are now available, thus representing a 
lower fraction of the whole genetic diversity of freshwater and diadromous fish in the Iberian Peninsula.

Code availability
All software with their respective versions and parameters used for producing the mitogenomes assembly, 
annotation, and phylogenetic tree are listed in the methods section. Software programs with no parameters 
associated were used with the default settings. No custom code was used for the curation and/or validation of the 
dataset.
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