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ABSTRACT
Most methods currently used to infer the “demographic history of species” interpret this expression as a history of population size 
changes. The detection, quantification, and dating of demographic changes often rely on the assumption that population struc-
ture can be neglected. However, most vertebrates are typically organized in populations subdivided into social groups that are 
usually ignored in the interpretation of genetic data. This could be problematic since an increasing number of studies have shown 
that population structure can generate spurious signatures of population size change. Here, we simulate microsatellite data from 
a species subdivided into social groups where reproduction occurs according to different mating systems (monogamy, polygy-
nandry, and polygyny). We estimate the effective population size (Ne) and quantify the effect of social structure on estimates 
of changes in Ne. We analyze the simulated data with two widely used methods for demographic inference. The first approach, 
BOTTLENECK, tests whether the samples are at mutation–drift equilibrium and thus whether a single Ne can be estimated. 
The second approach, msvar, aims at quantifying and dating changes in Ne. We find that social structure may lead to signals of 
departure from mutation–drift equilibrium including signals of expansion and bottlenecks. We also find that expansion signals 
may be observed under simple stationary Wright–Fisher models with low diversity. Since small populations tend to characterize 
many endangered species, we stress that methods trying to infer Ne should be interpreted with care and validated with simulated 
data incorporating information about structure. Spurious expansion signals due to social structure can mask critical population 
size changes. These can obscure true bottleneck events and be particularly problematic in endangered species.
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1   |   Introduction

Conservation genetics aims at using genetic data to improve 
conservation decisions. It typically requires the sampling of 
natural populations from which genetic, and now genomic 
data are obtained and interpreted (Oklander and Soto-
Calderón 2024). A first step consists in producing metrics such 
as the number of alleles and the observed and expected het-
erozygosities, and interpreting them using concepts from pop-
ulation genetics. One key concept is the effective population 
size, Ne, introduced by Wright (1931) as a way to summarize 
the genetic properties of populations. The effective size is the 
size of an ideal population that would have the same proper-
ties, say inbreeding, as the real population of interest (see re-
view by Charlesworth 2009). The effective size is an important 
concept because it provides a metric that allows comparisons 
between species that often differ in many biological character-
istics such as the sex ratio, the variance in reproductive suc-
cess, or its demographic history.

The demographic history of populations is often interpreted as 
the history of change in Ne over time (Beaumont 1999; Li and 
Durbin 2011; Liu and Fu 2020; Novo et al. 2023). While some 
demographic inference methods focus on the recent past, in-
cluding the past few thousands of years (Beaumont  1999; Liu 
and Fu 2020; Novo et al. 2023), others focus on the deeper past 
(Li and Durbin 2011). Some methods estimate a single contem-
porary Ne, supposedly reflecting the current Ne, and others esti-
mate a limited number of past effective sizes. For instance, the 
heterozygosity excess test relies on the equilibrium properties 
of summary statistics and determines whether a single Ne can 
explain the observed statistics. This method detects departures 
from Wright–Fisher expectations (Ewens 1972; Nei, Maruyama, 
and Chakraborty  1975; Tajima  1989). Such departures from 
equilibrium can be difficult to interpret because the properties 
of genetic data (coalescence rates, loss of heterozygosity over 
time, etc.) are influenced by non-panmitic conditions. Inferred 
changes in Ne may thus reflect other properties of the populations 
or species of interest, such as population structure or changes 
in migration. Whichever method one uses, the relationship be-
tween the inferred Ne and the actual demography of the species, 
such as its census size (Nc), remains complex. In the conserva-
tion genetics context, it is crucial to clarify what genetic data 
allow to say, particularly when we compute numbers and esti-
mate parameters that are as central as Ne (Charlesworth 2009; 
Sjödin et al. 2005), as this Special Issue stresses.

Many demographic inference methods assume that samples 
have been taken from panmictic and isolated populations, 
hence assuming that population connectivity is negligible. 
However, population structure plays a crucial role in generat-
ing patterns of genetic diversity and differentiation. Its impor-
tance has long been recognized in both field and theoretical 
studies. A number of methods and simulation programs have 
been developed to either infer demographic parameters (see 
Arredondo et  al.  2021; Beerli and Felsenstein  2001; Chikhi, 
Bruford, and Beaumont  2001; Hey and Nielsen  2004; Wang 
et  al.  2020), or to simulate genetic data under complex struc-
tured models (Excoffier, Estoup, and Cornuet  2005; Excoffier 
et al.  2021; Hudson  2002). A growing number of studies have 
found that population structure can generate spurious signals 

of demographic change. These studies have shown that ignoring 
population structure may lead to the detection of apparent size 
changes in populations for which such changes never took place. 
For instance, apparent changes in Ne may be due to structure or 
fluctuations in connectivity (Beaumont 2003; Chikhi et al. 2018; 
Girod et  al.  2011; Novo et  al.  2023; Paz-Vinas et  al.  2013; 
Wakeley  1999). Research in this area has also questioned the 
very notion of Ne. Under some structured models, Ne cannot 
be defined or can depend on the sampling scheme, making it 
a misleading concept (Chikhi et al. 2018; Sjödin et al. 2005). In 
addition, the sampling scheme can either contribute to (or min-
imize) the detection of spurious size changes. For example, spu-
rious changes may be minimized when several individuals are 
collected from different demes rather than from one single deme 
(Chikhi et al. 2010; Wakeley 1999). Moreover, for many species 
we usually have limited information on population structure be-
fore sampling and analyzing the data. Thus, the effects of the 
sampling scheme and of population structure are strongly con-
nected and difficult to separate.

So far, studies have looked at classical population genetics 
models of structure, such as n-island, stepping-stone, tree and 
continent-island models, which assume demes (random-mating 
units) as the fundamental unit of population structure. But, real 
populations are rarely structured in clearly identifiable demes. 
They are structured in a complex variety of ways including age 
classes, sex ratio, and mating systems, which may create devi-
ations from the standard coalescent (Wakeley  2009). Firstly, 
deviations from random mating occur because age and social 
structure can prevent some individuals from participating in 
reproduction. In most mammalian societies a few (dominant) 
males try to control access to females, and in some species, a 
small number of females can monopolize reproduction—in 
extreme cases one single female breeds while others do not re-
produce at all during their entire lifespan (Clutton-Brock 2006, 
2009). Secondly, dispersal can be strongly sex-biased, with one 
sex dispersing away from the natal group before reproduction 
and the other being philopatric (Greenwood 1980; Johnson and 
Gaines 1990), and this too may generate different gene genealo-
gies compared to stationary random mating populations.

Moreover, studies based on unlinked single nucleotide poly-
morphisms (SNPs) have shown that dioecious reproduction, 
high reproductive skew, and inbreeding constraints (mating 
prevented or preferred among sibs) can affect the expected time 
to the common ancestor and therefore the inferred coalescent 
Ne (Campbell 2015). In addition, social structure may influence 
statistical associations across loci, or other statistics that are in-
creasingly used to estimate contemporary Ne (Novo et al. 2023). 
However, all these results have not yet been integrated into de-
mographic inference. Little is known about the consequence of 
applying classical inferential methods to social species and in 
particular, whether these consequences differ from those ex-
pected under standard population genetics models.

Here, we simulate microsatellite data under socially structured 
populations. Even though genome-wide SNPs are now increas-
ingly used for non-model species, microsatellites are still among 
the markers most used in conservation genetics. Microsatellites 
are extensively used for determining genetic diversity and de-
mographic history in many threatened populations (Ghazi 
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et al. 2021; Modi et al. 2021; Srinivas and Jhala 2024). Moreover, 
for many rare and elusive species, non-invasive sampling makes 
it difficult to take advantage of whole genome data and many 
studies continue to focus on microsatellites due to low endoge-
nous content and highly fragmented DNA (Bajwa et al. 2023). We 
analyze simulated data using two approaches as implemented in 
the BOTTLENECK (Piry, Luikart, and Cornuet 1999) and the 
msvar (Beaumont  1999) softwares. We also estimate contem-
porary Ne using an approach based on linkage disequilibrium 
patterns between unlinked loci (Do et al. 2014). Our aim is to 
understand the extent to which properties of socially structured 
populations, such as dioecious reproduction, complex mating 
systems, and age-classes bias the estimation of recent Ne and Ne 
changes.

2   |   Materials and Methods

2.1   |   Generating Data Under Socially Structured 
Populations

We simulated genetic data under a socially structured popu-
lation. We used an individual-based forward-in-time simu-
lation framework developed and formalized by Parreira and 
Chikhi (2015), where the model is described in detail. In short, 
the model assumes that a population is a fully connected net-
work of social groups among which individuals can disperse. 
Under this topology each social group is connected to any other 
in the population. There is structure but no space, as in Wright's 
n-island model (Wright  1940). Each social group is an age-
structured unit where individuals mate according to different 
strategies (e.g., monogamy and polygyny) rather than at ran-
dom. The model explicitly simulates diploid individuals, which 
are represented by a number of microsatellite markers evolving 
under the strict stepwise mutation model (SMM). At the begin-
ning of the simulation, we create individuals by sampling ge-
nomes from a Wright–Fisher population with θ = 20 (where θ is 
the scaled mutation parameter 4 Nμ and μ is the per generation 
mutation rate for the entire locus). This Wright–Fisher pop-
ulation was generated using the ms program (Hudson 2002). 
In other words, we assume that the simulated population is 
funded by a few individuals from a large random mating pop-
ulation, a simplifying assumption that ensured that mutation–
drift equilibrium was reached much quicker than if we had 
to wait for mutations to appear. We assumed a mutation rate 
equal to μ = 5e−4, which is of the order of magnitude measured 
for microsatellites (Sun et al. 2012; Whittaker et al. 2003).

Under this model, individuals undergo a simplified life cycle 
which encompasses four key stages: offspring, juveniles, 
and adults (reproductive and non-reproductive, see below). 
Transitions between these stages occur depending on the age 
of an individual. Specifically, individuals are assumed to be off-
spring until they are weaned, juveniles if they are above wean-
ing age but still cannot reproduce, and finally adults. Transition 
ages and other life-history parameters are preset to given values 
according to the life cycle of a particular species of interest (see 
Table 1 for a detailed list of parameters). Note that under this 
framework, a social group is a relatively small age-structured 
aggregation of kin-related individuals. This is thus a model with 
overlapping generations.

A time unit in the model (a tick) consists of elementary up-
dates of the state of each individual (e.g., age and reproductive 
class). A tick corresponds to an arbitrary time unit which can 
be a year, a month, a day, or a few hours, depending on the 
life cycle of the species of interest. It is defined as the smallest 
time unit identifiable for the species as modeled in our sim-
plified life cycle. At each tick, individuals age, die, reproduce, 
migrate, and colonize new groups (see below).

Reproduction: Although all adults above reproductive age can 
potentially mate, only a limited number of adults actually mates. 
These individuals are identified as reproductive status individu-
als (RS). This means that, although there are many adults (RS and 
non-RS) within a group, mating pairs are formed within social 
groups among RS males and RS females only. The mating system 
is defined by the sex ratio of these RS individuals. For instance, 
under monogamy there is only one mating pair per social group 
(1♂:1♀), and under polygyny one single RS male mates with sev-
eral females (1♂:10♀ in our simulations). In other words, as in a 
real species, few individuals control reproduction for consecutive 
mating seasons. This is for instance the case of many primate 
societies characterized by dominance hierarchies where domi-
nant males enjoy exclusive access to females during an extensive 
period of time and until takeover by other males. The model as-
sumes that an individual may reproduce until death, that is, once 
an individual becomes RS it may stay reproductive during its en-
tire life. In practice, this means that the lifetime in the model can 
be seen as the reproductive lifetime of a real species.

At each reproduction event pairs are formed by randomly as-
signing one, and only one, RS male to each RS female. This 
implies that females reproduce with one single male although 
RS males can sire offspring from several RS females. The total 
number of offspring per social group is taken from a trun-
cated Poisson distribution, constraining on the mean number 
of offspring + 1 per mating pair. This constraint derives from 
the fact that in mammals it is rare for a female to have an ex-
tremely large number of offspring.

Dispersal: Under the social groups simulation framework there 
is a difference between migration and colonization events. 
Colonization occurs when a new social group is established to 
replace a group that vanished (because all individuals died). In 
this situation, new RS individuals are chosen at random among 
all non-RS individuals above reproductive age to establish a new 

TABLE 1    |    Life history parameters and values as used under the 
social group program simulations.

Parameter Value

Life span 28 ticks (7 years)

Max. life span 40 ticks (10 years)

Infant mortality 0.3

#Offspring 2

Weaning age 1 tick (3 months)

Reproductive age 8 ticks (2 years)

Birth interval 4 ticks (1 year)

 17524571, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.70063 by Faculdade M

edicina D
e L

isboa, W
iley O

nline L
ibrary on [11/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 of 12 Evolutionary Applications, 2025

social group. Migration occurs when individuals move to become 
RS in an already established group. It is a consequence of the 
death of some, but not all, RS individuals within a group, which 
creates “reproductive vacancies”. These vacancies are filled by 
migrants that are randomly chosen among non-RS individuals 
living in other social groups. Alternatively, if one of the sexes is 
philopatric, RS individuals of that sex are replaced by non-RS in-
dividuals randomly chosen from within their own social group. 
Note that migration is not defined by an explicit rate as in classi-
cal population genetics models, rather it is a consequence of the 
death rate as determined by the life span parameter.

The model includes two death parameters: infant and adult 
mortality. Infant mortality is a fixed value that indicates sur-
vival during the offspring stage, adult mortality is indirectly 
modeled by the lifespan parameter, which follows a truncated 
Poisson distribution. There is no carrying capacity or density 
regulation of any form in the model. Population size and via-
bility (i.e., no population crash) are an indirect consequence of 
the relationship between infant and adult mortality, and birth 
rates. While some parameter combinations resulted in unre-
alistically large populations, others led to population crashes. 
We ran a few preliminary analyses and chose a parameter 
combination (Table 1) resulting in both viable populations and 
population sizes within acceptable values for real populations. 
For instance, under the final combination of parameters, popu-
lations of 50 social groups present hundreds to thousands of in-
dividuals, with low to moderate genetic diversity. Specifically, 
the total census population size under monogamy was around 
600 individuals. For the other mating systems, it led to larger 
numbers of individuals, around 1000 individuals under polyg-
ynandry and 6000 under polygyny.

2.2   |   Simulations Under the Social Groups Model

For this study, we considered three mating systems: monogamy, 
polygyny, and polygynandry defined by the ratio RS♂:RS♀: 
1:1 in monogamy, 1:10 in polygyny, and 2:2 in polygynandry 
(Table 2). We assumed that females are philopatric, that is only 
males disperse within the network of social groups. This is be-
cause mammalian social systems are typically characterized 
by female philopatry and male dispersal (Greenwood  1980; 
Johnson and Gaines  1990). Life-history parameters were as-
sumed as in Table 1. Simulations were run for 5e5 ticks, corre-
sponding to > 25,000 generations, much beyond that required 
to attain mutation–drift equilibrium. Genetic and demographic 

equilibrium were confirmed based on the convergence of sum-
mary statistics, specifically the expected heterozygosity, He and 
the FST (Nei 1977; Wright 1951). For each scenario, we produced 
100 independent replicates.

We simulated datasets under 10, 50, and 500 social groups. 
Although only RS individuals reproduce, populations comprise 
many other individuals, non-reproductive adults, juveniles, and 
offspring that are part of the census size. While populations of 
10 social groups correspond to census sizes of a few hundred to 
thousands of individuals with very little diversity, 50 social groups 
hold hundreds to thousands of individuals (census size) and 
low to moderate genetic diversity. These values of diversity are 
within the range found for many species (Ghazi et al. 2021; Modi 
et al. 2021; Mukesh et al. 2015; Srinivas and Jhala 2024). On the 
other hand, 500 groups correspond to large census sizes of thou-
sands to hundreds of thousands of individuals and high diversity. 
Note that simulated populations are stationary—certainly suf-
fering neither collapse nor expansion—and their dynamics and 
diversity are maintained for thousands of generations.

For the demographic inference analysis, we sampled individ-
uals alive at the last time point of the simulation. These were 
sampled at random among offspring, juveniles, RS individuals 
and non-RS females to represent sampling individuals living in 
groups (thus excluding individuals that are not part of a group). 
Non-RS males were not sampled as these correspond to individ-
uals that would have dispersed in a real species and are thus not 
considered as part of a group.

Because the sampling strategy is known to have an impact on 
the detection of demographic signals, we used three different 
sampling strategies. We randomly sampled 20 individuals (i) 
from a small pool of five groups; (ii) from a larger pool of 10 (out 
of 10), 30 (out of 50), and 100 (out of 500) groups, as to mimic 
sampling being limited to part of the overall distribution of a 
population, and (iii) making sure each individual comes from 
a different social group, that is, one individual per group, as to 
avoid sampling kin related individuals. Note that when restrict-
ing to one individual per group, we could only sample 10 individ-
uals under the 10 social groups scenario.

2.3   |   Simulations Under Panmictic Populations

We generated data under a single panmitic (random-mating) 
non-structured, constant-size population. This allowed us to 

TABLE 2    |    Scenarios simulated in this study.

Framework Mating Sex ratio #SG Sex system Ploidy θ

Social groups Monogamy 1:1 10,50,500 Dioecious 2n —

Social groups Polygynandry 2:2 10,50,500 Dioecious 2n —

Social groups Polygyny 1:10 10,50,500 Dioecious 2n —

EASYPOP Random 1:1 1000 Dioecious 2n —

EASYPOP Random 1:1 2000 — n —

ms Random 1:1 — — n (0.1–1), 1.5, 2

Abbreviations: #SG, number of social groups; θ, the scaled mutation parameter 4Nμ, where μ is the per generation mutation rate for the entire locus.
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obtain expectations for idealized populations. We simulated co-
alescent genealogies under the ms program (Hudson 2002) and 
translated them into microsatellite length variation data assum-
ing the SMM, using the microsat program (Hudson 2002). We 
generated data under a wide range of θ values. θ varied between 
0.1 and 1 in increments of 0.1 and also took values of 1.5 and 2. 
This generated datasets within the range of He values obtained 
under the social groups simulations. We also generated data 
under EASYPOP, an individual-based forward time program to 
simulate microsatellite genetic data under the SMM mutation 
model (Balloux  2001). We simulated one single population of 
1000 diploid dioecious individuals (500♂ and 500♀) and also one 
population of 2000 haploid individuals. As in the social groups' 
simulations, we simulated 100 loci under a mutation rate of 
μ = 5e-4 per locus per generation. We generated 100 independent 
datasets under each scenario. We sampled 20 diploid individuals 
in the EASYPOP and 40 genes under ms at the last time point 
of each simulation to carry out the demographic analyses. Note 
that the EASYPOP and the social group programs are forward 
in time and explicitly represent all individuals living in a popu-
lation, whereas the ms is a coalescent-based program.

In total, we generated data under 23 different scenarios: social 
groups monogamy, polygyny, and polygynandry with (10; 50; 
500) groups (a total of nine scenarios), ms θ = (0.1-1), 1.5, 2 (in 
a total of 12 scenarios) and EASYPOP haploid and diploid (two 
scenarios; see Table 2).

2.4   |   Inference of the Demographic History

The simulated datasets were analyzed using two methods to 
detect population size changes: BOTTLENECK v.1.2.1 (Piry, 
Luikart, and Cornuet 1999) and msvar 0.4 (Beaumont 1999).

BOTTLENECK: The BOTTLENECK software (Piry, Luikart, 
and Cornuet  1999) implements a simple method that allows 
detect population size changes, either decreases or expan-
sions, based on a heterozygosity excess test (Cornuet and 
Luikart  1996). It tests for the null hypothesis of a stationary 
population by identifying deviations from the mutation–drift 
equilibrium. In a population with constant size, the forces of 
mutation and drift balance each other maintaining genetic 
diversity at an equilibrium: the mutation–drift equilibrium. 
Ewens (1972) has shown that under this equilibrium the num-
ber of alleles in a sample is sufficient to calculate the theoretical 
expected distribution of the heterozygosity. The heterozygosity 
test as implemented in BOTTLENECK computes this theoreti-
cal heterozygosity by simulating coalescent trees under a given 
mutation model (the SMM in this study), and compares it to 
the expected heterozygosity (He Nei's gene diversity; Nei 1978). 
While an excess of heterozygosity provides evidence for pop-
ulation contraction, a deficit provides evidence for expansion. 
We conducted 1000 coalescent simulations assuming the SMM. 
Note that the same mutation model was used in the social 
groups, EASYPOP, and ms programs. Statistical significance 
was tested using the Wilcoxon signed-rank test (Cornuet and 
Luikart  1996). We considered an arbitrary p-value < 5% as 
evidence of support for a population size change. Tests were 
performed using 100 independent loci and 100 independent 
datasets for each scenario.

Under the BOTTLENECK program, we analyzed data from 50 
social groups and ms data with θ = 2, corresponding to moderate 
to high values of diversity.

msvar: The msvar software implements a likelihood-based 
Bayesian method (Beaumont 1999). This method analyses mi-
crosatellite data evolving according to the SMM. It assumes that 
at Ta generations ago one single stable population changed from 
an ancestral size N1 to a current size N0, either exponentially or 
linearly. The method estimates the posterior distribution of the 
model parameters—the ratio N0/N1, the scaled time Tf = Ta/N0, 
and the scaled mutation rate μ under a simple model of size 
change. It uses the full allelic distribution of a population, spe-
cifically allelic states, and the allelic frequency distribution. We 
assumed an exponential change and we set priors as wide uni-
form distributions varying between (−5, 5) for the three param-
eters log10 (r), log10 (μ), and log10 (Ta). Because when populations 
are subdivided into demes (random-mating units) a false signal 
of population bottleneck can be observed (Wakeley  1999), we 
chose positive log10 (r) values as starting points for the MCMC, 
corresponding to expansions, far from the expected bottleneck. 
However, because we ended up with positive posteriors partic-
ularly strong under some scenarios, results were confirmed by 
reanalyzing some runs using negative log10 (r) as starting values 
for the MCMC. The initial μ values were chosen for each locus 
from a uniform (0,1) distribution.

For computational reasons, we analyzed a subset of 20 data-
sets in msvar. For each scenario, we analyzed 20 independent 
datasets and 20 loci. We performed a single long run of 5 × 100 
steps with a thinning interval of 50,000 steps. The convergence 
of the chain was checked visually and the first 10% of the chain 
was discarded as burn-in. The number of steps performed was 
enough to reach the stationary distribution and the few datasets 
in which chains did not seem to converge were discarded.

2.5   |   Estimation of Contemporary Ne

We estimated Ne of the simulated populations using the 
NeEstimator (version 2.1.; Do et  al.  2014). This software es-
timates contemporary Ne using three methods: patterns of 
linkage disequilibrium (LD) between unlinked markers, het-
erozygosity excess, and molecular coancestry. We estimated Ne 
under the LD method (Waples 2006). This method uses Weir's 
unbiased estimator of Δ which calculates the correlation of allele 
frequencies at each pair of loci (Δ2), where the expected Ne is a 
function of Δ2, sample size, recombination rate, and mating sys-
tem, using statistics corrected by Do et al. (2014) and derived by 
Waples (2006) for random mating and monogamy.

We used two sampling strategies whereby we sampled 20, 50, 
and 100 individuals either: (i) at random among the 10 (out of 
10), 30 (out of 50), and 100 (out of 500) social groups or (ii) by 
making sure that each sampled individual came from a different 
group. This is intended to minimize the relatedness within sam-
ples. Again, note that when sampling one individual per group 
the sample size was necessarily limited to the total number of 
groups—10 individuals when 10 groups were simulated and 50 
individuals for simulations with 50 groups. For each indepen-
dent simulation, we obtained 10 independent sample replicates. 
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We estimated Ne using 20 microsatellite loci, a number com-
parable to what is used in real datasets (Goossens et al. 2006; 
Lester et al. 2021; Quéméré et al. 2012). The NeEstimator pro-
gram specifies one of two options, “random mating” or “monog-
amy” and therefore we choose monogamous mating whenever 
samples were obtained under the monogamous scenario. Once 
the presence of rare alleles affects the performance of the LD 
method, we excluded alleles that occurred as one single copy in 
the sample.

3   |   Results

3.1   |   Demographic Inference With BOTTLENECK

The BOTTLENECK method detected departures from muta-
tion–drift equilibrium in many datasets simulated under the 
social structure model. A significant deficit of heterozygosity 
(H-deficit, p-value < 0.05), corresponding to expansions, was de-
tected in 27% datasets simulated under monogamy, 32% under 
polygynandry, and 38% under polygyny (Figure 1). As these pro-
portions show, we observed some differences between mating 
systems but the general signal was a consistent difference from 
what is expected under classical population genetics models. 
Classical population structure is expected to exhibit bottleneck 
signals, that is, a significant heterozygosity excess (H-excess). 
In our simulations, the support for bottlenecks was poor and 
only two of the 300 datasets analyzed showed significant H-
excess (Figure S1). These datasets corresponded to monogamy 
scenarios but it is unclear if this should be taken at face value. 
Altogether, the p-value distributions were asymmetrical with 
higher probabilities for quantiles corresponding to H-deficits 
(Figure 1). In other words, all scenarios showed similar biases 
toward spurious signals of expansion.

We also detected false signals of population size changes in 
datasets simulated under EASYPOP (Wright–Fisher panmictic 
models, Figure  S2). BOTTLENECK detected spurious expan-
sions (a significant H-deficit) in 37% of datasets in the haploid 
model and in 29% of datasets in the diploid model. Note that 
in the haploid scenario, 66% of all datasets were highly biased 

in either direction (37% significant for expansion and 29% for a 
bottleneck). A bias toward spurious expansions was also found 
in datasets simulated under the ms coalescent-based simula-
tion program (θ = 2), p-values were significant for expansions in 
30% of the datasets (H-deficit). Thus, with the exception of the 
EASYPOP haploid scenario, for which many datasets favored 
bottlenecks (Figure S2 lower panel), BOTTLENECK was biased 
toward expansions even under panmictic models. Note that 
under panmictic models, BOTTLENECK should either detect no 
signal of departure from equilibrium or similar proportions of 
false positives in both directions (bottlenecks and expansions).

3.2   |   Demographic Inference in msvar

In datasets generated under the social groups framework, msvar 
often inferred spurious population size changes. These were fre-
quently toward expansions, although spurious signals of con-
tractions were also found. For simulations with 10 and 50 social 
groups, the sampling strategy did not seem to influence estimated 
changes in Ne. In all scenarios, except monogamy (see below), 
general conclusions about demographic history were comparable 
among sampling schemes (Figure 2, and Figures S3, S4). Under 
simulations with 10 groups, we consistently found strong spurious 
expansion signals: the log10 (r) posteriors were biased toward pos-
itive values across all social systems (Figure 2, and Figures S3, S4 
top panels). Among scenarios with 50 social groups, signals of pop-
ulation size change varied widely across simulations. Overall, the 
marginal posterior distributions of log10 (r) = N0/N1 were wide and 
relatively flat, suggesting a stationary model without very strong 
signals for increasing or decreasing populations (Figure  2 and 
Figure S3 middle panels). However, in 50 groups scenarios, when 
a spurious demographic signal was detected this was often biased 
toward an expansion. Particularly, monogamy led to unexpectedly 
strong spurious expansion signals that were magnified when only 
one individual per group was sampled (Figure S4).

Under 500 groups scenarios, the sampling strategy had an ef-
fect in the detection of population size changes (Figures 2, and 
Figures  S3, S4). First, in 500 groups, we did not find signals 
of population size change when we sampled from a large pool 
of social groups either at random or from one individual per 
group. Most posteriors were flat and did not differ from priors 
(Figure 2 and Figure S4). However, posteriors were consistently 
biased toward bottlenecks when we sampled individuals from a 
smaller pool of five social groups (Figure S3 lower panels). These 
disparate results are in agreement with expectations for deme-
structured models—when samples derive from a single deme, 
bottlenecks are expected. However, the effect of the structure is 
minimized when each individual comes from a different deme 
(Chikhi et al. 2010). Still, when we found a bottleneck, this did 
not seem as strong as those found in deme-based models.

Overall, it appears that at intermediate levels of diversity demo-
graphic signals are the result of an interplay between genetic 
diversity, the social structure, and the sampling scheme. These 
intermediate levels of diversity (Figure S5) are within those ob-
served in real datasets from endangered species (Ghazi et al. 2021; 
Modi et al. 2021; Mukesh et al. 2015; Srinivas and Jhala 2024). At 
the same time, msvar detected spurious expansions as a conse-
quence of the limited level of genetic diversity caused by a very 

FIGURE 1    |    Detection of change in population size in social groups 
in BOTTLENECK. Distribution of p-values obtained under the H-
deficit test providing evidence for expansions. The dashed vertical line 
indicates p-value = 0.05, under which only 5% of datasets are expected 
to be found by chance.
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small number of social groups, whereas when we increased the 
number of groups, and diversity, the signal moved toward classi-
cal expectations for structured populations (Figure 2).

Diversity seems to play a major role in creating a spurious bias 
toward expansions. Spurious expansions were also detected in 
datasets simulated under the ms scenarios with low to moderate 
diversity (Figures S6 and S7). msvar inferred posteriors highly bi-
ased toward positive values under ms θ = (0.1–0.5). However, at 
higher levels of diversity (θ >1) msvar did not detect population 
size changes, as expected for Wright–Fisher scenarios (Figure S6).

Surprisingly, a panmictic diploid forward model (EASYPOP) 
led to spurious bottlenecks (Figure S8). For datasets simulated 
under a panmitic haploid unstructured population (EASYPOP), 
posteriors of log10 (r) were flat and very similar to the priors 
(Figure S8). Our results suggest that the detection of population 

size changes is a complex function of diversity and population 
structure, including social structure (mating and dispersal) and 
sampling.

3.3   |   Contemporary Ne Estimates

Figure 3 shows the distribution of Ne estimates for the three mat-
ing systems, under different sampling schemes and sample sizes. 
As expected we found that the variance in Ne estimates decreased 
with the number of sampled individuals for all sampling schemes 
and mating systems. In particular, the variance in Ne estimates 
was particularly high when we sampled 20 individuals, including 
a few values as high as 2000 and infinite estimates. These infinite 
values are expected under small sample sizes and are discussed by 
Waples and Do (2008). The corresponding datasets were removed 
and omitted from the plots. This is why we do not show the results 

FIGURE 2    |    Detection of change in population size in msvar. Posterior distributions for log10 (r), the ratio of present N0 over past N1 population 
size. Results were obtained from sampling individuals at random from a large pool of social groups. 10, 30, and 100 groups were sampled from a total 
of 10, 50, and 500 groups. The prior for log10 (r), set as a uniform between −5 and 5, is represented by the horizontal dotted line.
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8 of 12 Evolutionary Applications, 2025

for 10 social groups when only one single individual is sampled 
per group. While small sample sizes could return confusing Ne es-
timates, we found that sample sizes above 50 returned consistent 
mean Ne estimates. With 50 and 500 social groups, we found that 
the two sampling schemes (one individual per group or sampling 
at random), led to similar Ne values (Figure 3). Thus, these results 
suggest that for large sample sizes, NeEstimator provided consis-
tent estimates for a particular scenario and sampling scheme with 
little variation across sampling schemes. Interestingly, the Ne es-
timates were similar for the simulation with 50 groups for the dif-
ferent mating systems, whereas for 500 groups the estimates were 
higher under monogamy.

We also found that the estimated Ne was much lower than the 
number of RS individuals. This was observed under the three 
simulated mating systems (Figure S9). While estimates with 50 
social groups returned Ne values around 30, the actual number 
of RS was above 100 in all simulations. With 500 social groups 
mean Ne estimates were below 150, while the number of RS was 
above 1000 in all mating systems (Figure S9). We stress here that 
the total number of individuals simulated is much larger than 
the number of RS individuals actively reproducing. It also in-
cludes adults who never become RS in a social group, juveniles, 
and infants. Also, note that the number of RS individuals is not, 
and should not be, interpreted as a proxy for Ne.

4   |   Discussion

Our results suggest that when populations are socially struc-
tured, some methods that test for changes in population size 
or estimate current Ne can produce results that are difficult to 

interpret in relation to the actual demography of the population. 
As a consequence, these methods are potentially misleading 
when identifying trajectories in terms of changes in Ne. We fo-
cused on three approaches widely used in conservation genetics, 
and that directly or indirectly infer and interpret Ne. The first 
approach, BOTTLENECK, identifies departures from muta-
tion–drift equilibrium that are usually interpreted in terms of 
bottlenecks or expansion. The second approach, msvar dates 
and quantifies population size changes by estimating the ratio of 
current to past Ne. BOTTLENECK can be seen as a way to test 
whether one single Ne value can be used to model the population 
of interest, while msvar goes one step further by fitting a two-Ne 
model. The third method, NeEstimator, directly estimates one 
contemporary Ne based on patterns of LD across independent 
genetic markers.

Our objective was to improve our understanding of the concept 
of Ne when populations or species are organized in social groups 
under various mating systems. We identified many cases where 
no single Ne could meaningfully explain the data (BOTTLENECK 
results) and where contradictory two Ne models would be inferred 
(msvar results). We also found that the NeEstimator inferred Ne 
values very far from the simulated population sizes, whether we 
consider the number of RS individuals or the census size, Nc.

The methods we used here have been widely applied to endan-
gered species. Low current effective sizes have been often esti-
mated and changes in Ne often detected (Goossens et  al.  2006; 
Quéméré et  al.  2012; Storz and Beaumont  2002). For instance, 
bottlenecks were detected in orangutans from Sabah and lemurs 
in Madagascar when using the msvar and BOTTLENECK meth-
ods (Goossens et al. 2006; Quéméré et al. 2012). In these studies, 

FIGURE 3    |    Effective size (Ne) estimates. Each panel corresponds to one mating system as simulated under the social groups model. Each color 
corresponds to a number of sampled individuals, n = 20, 50, and 100. In (A) individuals were sampled at random and in (B) one single individual 
was sampled per group. Point estimates that returned infinite values were removed. For that reason, all estimates for 10 social groups sampling 
scheme B and most values for 10 groups sampling scheme A, 20 samples (lighter color) are omitted. The y-axis is truncated at 350. M, Monogamy; 
PG, Polygynandry; PL, Polygyny.

 17524571, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.70063 by Faculdade M

edicina D
e L

isboa, W
iley O

nline L
ibrary on [11/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



9 of 12

the authors have tested for the dependence of apparent bottle-
necks on population structure, but they did not test for the effect 
of social structure. Jana and Karanth (2023) used BOTTLENECK 
and found a recent expansion in blackbucks (the Indian antelope 
Antilope cervicapra), suggesting evidence of species adaptation to 
human-altered landscapes. Although the Indian blackbuck may 
be indeed expanding, we emphasize that the expansion signal 
could in part be the result of social structure or change in social 
structure, rather than the result of a reduction in conservation 
threats. Further, mating systems and social structure have an ef-
fect on the Nc/Ne ratio. Under most scenarios of social structure, 
high ratios of Nc/Ne can be observed. A number of recent studies 
have stressed that when Nc >> Ne, some measures of genetic diver-
sity, such as allelic richness, may be higher than that predicted by 
the Ne estimates as obtained using statistics such as He (Allendorf, 
Hössjer, and Ryman 2024; Mergeay 2024). This too could lead to 
an apparent departure from equilibrium for methods such as those 
implemented in BOTTLENECK as they implicitly compare Ne es-
timates based on the number of alleles and He. More work should 
be done from the theoretical point of view to determine whether 
and how the Nc/Ne ratio must be accounted for in conservation.

Our simulation study suggests that, under the three mating sys-
tems tested (monogamy, polygynandry, and polygyny), social 
structure can lead to the detection of spurious Ne change esti-
mates. We found that the direction of the demographic signal 
(decline or expansion) changed as a function of the number of 
social groups simulated, the mating system, and the sampling 
scheme. In particular, populations composed of fewer groups 
showed a spurious but strong expansion, whereas the signal 
was lost/shifted toward contraction when the number of social 
groups increased. The “expansion bias” might mislead con-
servationists about species for which conservation actions are 
mostly important. The “bottleneck bias” converges toward what 
has been observed in structured populations where population 
structure is modeled by panmictic demes connected by gene 
flow (i.e., n-island or stepping-stone models).

Population structure has been studied extensively in the 
last decades (Maruyama and Kimura  1980; Pannell and 
Charlesworth 2000; Slatkin 1977; Wakeley 1999; Whitlock 1992; 
Wright  1931). A number of theoretical studies have proposed 
different analytical equations to compute Ne under structured 
models (see Charlesworth  2009; Charlesworth, Charlesworth, 
and Barton 2003; Sjödin et al. 2005; Wakeley 1999). In addition, 
studies have suggested simplifications to deal with structure, 
such as sex differences and age structure under the assump-
tion that reproduction and migration do not have long-lasting 
effects and can be averaged out using fast time-scale approxi-
mations. These assumptions implicitly mean that social struc-
ture is unlikely to be very important in explaining patterns 
of genetic diversity. That is, it does not represent a problem 
to compute one single Ne for socially structured populations. 
Similarly, methods for inferring changes in Ne assume that 
the effects of structure are negligible compared to changes in 
population size (Beaumont 1999; Li and Durbin 2011; Liu and 
Fu  2020). However, more than two decades of research have 
shown that when samples are drawn from structured popula-
tions, these methods will detect, date, and quantify changes in 
Ne that never occurred (Chikhi et al. 2010; Heller, Chikhi, and 
Siegismund 2013; Hoban et al. 2013; Mazet et al. 2016; Paz-Vinas 

et  al.  2013; Städler et  al.  2009; Wakeley  1999). Inferences are 
often biased toward the detection of recent bottlenecks in 
coalescent-based methods, with stronger effects when samples 
come from a single deme exchanging migrants with other demes 
(Chikhi et al. 2010; Mazet et al. 2016; Wakeley 1999). Moreover, 
a method inferring changes in Ne will infer a current Ne close 
to the deme size and an ancient Ne close to the overall (large) 
population size. Wakeley (1999) noted that when individuals are 
taken from several demes this bottleneck signal should disap-
pear as the gene tree of this “global” sample will tend toward 
that of a single Ne of the metapopulation size. But this result may 
not hold when social structure is present.

The expectations for the classical structure, above, are valid 
under the assumption of constant size (no change in migration, 
deme size, or number of demes) and symmetry (migration and 
deme size, as in the n-island). If there are changes in deme size 
and migration patterns, more complex histories of Ne can be 
inferred. For instance, expansions can actually be found in 
populations experiencing asymmetrical gene flow (Paz-Vinas 
et al. 2013), or when sampling two haploid genomes from differ-
ent demes (Mazet et al. 2016; see also Chikhi et al. 2018 for dif-
ferent asymmetrical models such as continent-island models). 
Still, nearly no work has tried to understand the effect of so-
cial structure. One natural simplification might be to consider 
that social units are like small demes and apply the structured 
coalescent of Notohara (1990) and Wilkinson-Herbots  (1998). 
However, our results suggest that this may not be enough when 
populations are socially structured. While the ancestral co-
alescence process should provide a good approximation under 
a variety of departures from the Wright–Fisher models, such 
as two-sexes, age structure, and mating systems (Möhle 1998, 
2000; Wakeley  2009), this principle relies on strong assump-
tions of (i) a very large number of islands (D → ∞), (ii) large 
deme size (N → ∞), (iii) “strong migration,” and (iv) small sam-
ple size compared to deme size (s < < N). Social groups will 
rarely follow any of these approximations. In social species, 
sample sizes are usually of the same order of magnitude as the 
group size. Therefore, in a single time unit, multiple coalescent 
events may occur. Under continuous time coalescence, multi-
ple coalescences can never take place. Also, in real populations 
genealogies are constrained by pedigrees. For that reason, gene 
genealogies can deviate from expected standard coalescent 
in the very recent past (e.g., the last 10 generations, Wakeley 
et  al.  2012), when many coalescences are expected to occur 
quickly. But, under some modes of mating, the actual pedigree 
prevents coalescent events in the very few past generations. For 
example, when females are philopatric and males migrate, par-
ents and offspring can never share a common ancestor in the 
male lineage in the immediate previous generation. Moreover, 
in social groups individuals have varying degrees of relatedness 
(sibs, half-sibs, parent-offspring, etc.). Sampling from such diver-
sity can result in different genealogies and variable Ne estimates. 
This could explain why both bottlenecks and expansions can be 
inferred under the same mating scenario.

It thus appears that social groups, as simulated here, have proper-
ties that violate the assumptions required to observe the expected 
convergence toward the standard coalescent model. We must 
stress though that such departures do not seem to be limited to 
social structure. For instance, simulations with ms and EASYPOP 

 17524571, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/eva.70063 by Faculdade M

edicina D
e L

isboa, W
iley O

nline L
ibrary on [11/04/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



10 of 12 Evolutionary Applications, 2025

showed that Wright–Fisher models could generate surprising ex-
pansion or bottleneck signals when θ, the scaled mutation rate, was 
low. Cornuet and Luikart (1996) noted, some 30 years ago, a series 
of conditions that may lead to spurious expansion signals when 
testing for deviations from mutation–drift equilibrium. These are 
hidden substructure, recent immigration, and sampling hybrids 
of two populations. All these cases may occur when samples 
come from populations subdivided into social groups and thus, it 
is not surprising that BOTTLENECK detects expansions. While 
these situations may seem purely theoretical, the recent study by 
Jana and Karanth (2023), detecting an expansion in endangered 
blackbucks, shows that it can actually have practical conservation 
implications. Here we focused on microsatellite markers, which 
remain prevalent for species where non-invasive sampling is nec-
essary. However, the effect of social structure likely extends to all 
coalescent-based inference methods, including those based on 
whole-genome data such as site-frequency-spectrum or haplotype 
data (Fournier et al. 2023; Gutenkunst et al. 2009). These data pro-
vide significantly more information than microsatellite data and 
may thus be very useful for reconstructing the recent evolution-
ary history of species (Li and Durbin 2011; Novo et al. 2023), but 
they may also provide misleading support for events that never 
took place (Chikhi et al. 2010; Mazet et al. 2016). It would thus 
be important to study the potentially spurious effects caused by 
social structure also in genome-wide data, that are now more fre-
quently employed for endangered species (e.g. Guevara et al. 2021 
on sifakas; Prado-Martinez et al. 2013 on chimpanzees; Teixeira 
et al. 2021 on mouse lemurs).

4.1   |   Final Remarks

The concept of Ne was created to compare different biological 
models and provide a common scale for measuring genetic drift in 
natural populations. Depending on the properties of interest (tem-
poral variance in allele frequencies or total amount of diversity) 
Ne estimates can have different values. With the advent of the co-
alescent theory, the concept of coalescent Ne was developed, but it 
soon appeared that it was problematic too when populations were 
structured (Sjödin et al. 2005). As we already noted, no constant-
size population (i.e., no single Ne) can explain the distribution of 
gene genealogies under a structured model. Even in an n-island 
model, a “dynamic Ne” is required, as a constant Ne cannot ade-
quately explain the data leading to notions related to a local versus 
global Ne (Mazet et al. 2016; Novo et al. 2023; Ryman, Laikre, and 
Hössjer 2019; Tenesa et al. 2007; Wakeley 1999). Here, we show 
that the structure created by mating systems may create different 
biases that may be negligible for some questions and central to oth-
ers. It is one of the challenges that population and conservation 
biologists will have to face. In addition, as soon as a model is struc-
tured the genealogies will depend on the sampling scheme. The 
concept of Ne is supposed to characterize a stationary demographic 
model and should not depend on the sampling scheme. If depend-
ing on the sampling scheme we can infer two (or more) values of 
Ne it seems rather odd to claim that the concept of Ne is meaning-
ful. Rather, one should use that result to try and improve our un-
derstanding of the population structure of the species we wish to 
protect. Their structure likely influenced its evolutionary history.

While we question the uncritical use of Ne for (socially and 
deme) structured populations, we stress that Ne is a useful 

concept. Computing and using Ne estimates remains necessary 
to compare models and inferences. It remains a central concept 
in population and conservation genetics. We must however ac-
knowledge that there are many ways to compute Ne and not all 
are easily comparable. For conservation purposes, we should 
try to focus on methods that are more influenced by the recent 
history of species, and thus may better integrate the recent 
threats and be useful for conservation plans (see for instance 
Waples  2024 this issue). Although the coalescent Ne concept 
may be seen as less relevant for conservation, we think that all 
Ne concepts should be integrated to provide a more complete un-
derstanding of both the recent and more ancient history of en-
dangered species. It is such a long-term and short-term view that 
should in the end be used for designing conservation actions.
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